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PREFACE

The process of setting waterfowl hunting regulations is conducted annually in the United States (U.S.; Blohm
1989) and involves a number of meetings where the status of waterfowl is reviewed by the agencies responsible
for setting hunting regulations. In addition, the U.S. Fish and Wildlife Service (USFWS) publishes proposed
regulations in the Federal Register to allow public comment. This document is part of a series of reports
intended to support development of harvest regulations for the 2021 hunting season. Specifically, this report
is intended to provide waterfowl managers and the public with information about the use of adaptive harvest
management (AHM) for setting waterfowl hunting regulations in the U.S. This report provides the most
current data, analyses, and decision-making protocols. However, adaptive management is a dynamic process
and some information presented in this report will differ from that in previous reports.
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1 EXECUTIVE SUMMARY

In 1995 the U.S. Fish and Wildlife Service (USFWS) implemented the adaptive harvest management (AHM)
program for setting duck hunting regulations in the United States (U.S.). The AHM approach provides a
framework for making objective decisions in the face of incomplete knowledge concerning waterfowl population
dynamics and regulatory impacts.

The coronavirus disease 2019 (COVID-19) pandemic prevented the USFWS and their partners from perform-
ing the Waterfowl Breeding Population and Habitat Survey (WBPHS) and estimating waterfowl breeding
populations and habitat conditions in the spring of 2020. As a result, AHM protocols have been adjusted
to inform duck hunting regulations based on model predictions of breeding populations and habitat condi-
tions. In most cases, system models specific to each AHM decision framework have been used to predict
breeding population sizes from the available information (e.g., 2019 observations). However, for some system
state variables we have used updated time series models to forecast 2020 values based on the most recent
information.

The AHM protocol is based on the population dynamics and status of two mallard (Anas platyrhynchos)
stocks and a suite of waterfowl stocks in the Atlantic Flyway. Mid-continent mallards are defined as those
breeding in the WBPHS strata 13–18, 20–50, and 75–77 plus mallards breeding in the states of Michigan,
Minnesota, and Wisconsin (state surveys). The prescribed regulatory alternative for the Mississippi and
Central Flyways depends exclusively on the status of these mallards. Western mallards are defined as those
breeding in WBPHS strata 1–12 (hereafter Alaska) and in the states of California, Oregon, Washington, and
the Canadian province of British Columbia (hereafter southern Pacific Flyway). The prescribed regulatory
alternative for the Pacific Flyway depends exclusively on the status of these mallards. In 2018, the Atlantic
Flyway and the USFWS adopted a multi-stock AHM protocol based on 4 populations of eastern waterfowl
[American green-winged teal (Anas crecca), wood ducks (Aix sponsa), ring-necked ducks (Aythya collaris),
and goldeneyes (both Bucephala clangula and B. islandica combined)]. The regulatory choice for the Atlantic
Flyway depends exclusively on the status of these waterfowl populations.

Mallard population models are based on the best available information and account for uncertainty in popula-
tion dynamics and the impact of harvest. Model-specific weights reflect the relative confidence in alternative
hypotheses and are updated annually using comparisons of predicted to observed population sizes. For
mid-continent mallards, current model weights favor the weakly density-dependent reproductive hypothesis
(>99%) and the additive-mortality hypothesis (72%). Unlike mid-continent mallards, we consider a single
functional form to predict western mallard and eastern waterfowl population dynamics but consider a wide
range of parameter values each weighted relative to the support from the data.

For the 2021 hunting season, the USFWS is considering similar regulatory alternatives as 2020. The nature of
the restrictive, moderate, and liberal alternatives has remained essentially unchanged since 1997, except that
extended framework dates have been offered in the moderate and liberal alternatives since 2002. Harvest
rates associated with each of the regulatory alternatives have been updated based on band-recovery data
from pre-season banded birds. The expected harvest rates of adult males under liberal hunting seasons are
0.11, and 0.13 for mid-continent and western mallards, respectively. In the Atlantic Flyway, expected harvest
rates under the liberal alternative are 0.12, 0.12, 0.13, and 0.03 for American green-winged teal, wood ducks,
ring-necked ducks, and goldeneyes, respectively.

Optimal regulatory strategies for the 2021 hunting season were calculated using: (1) harvest-management
objectives specific to each stock; (2) current regulatory alternatives; and (3) current population models
and their relative weights. Based on liberal regulatory alternatives selected for the 2020 hunting season, a
2020 prediction of 9.07 million mid-continent mallards, 3.40 million ponds in Prairie Canada, 0.94 million
western mallards predicted for Alaska (0.41 million) and the southern Pacific Flyway (0.53 million), and 0.35
million American green-winged teal, 0.94 million wood ducks, 0.70 million ring-necked ducks and 0.58 million
goldeneyes predicted for the eastern survey area and Atlantic Flyway, the optimal choice for the 2021 hunting
season in all four Flyways is the liberal regulatory alternative.
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AHM concepts and tools have been successfully applied toward the development of formal adaptive harvest
management protocols that inform American black duck (Anas rubripes), northern pintail (Anas acuta), and
scaup (Aythya affinis, A. marila combined) harvest decisions.

For black ducks, the optimal country-specific regulatory strategies for the 2021 hunting season were calculated
using: (1) an objective to achieve 98% of the maximum, long-term cumulative harvest; (2) current country-
specific black duck regulatory alternatives; and (3) updated model parameters and weights. Based on a liberal
regulatory alternative selected by Canada and a moderate regulatory alternative selected by the U.S. for the
2020 hunting season and the 2020 model prediction of 0.50 million breeding black ducks and 0.39 million
breeding mallards predicted for the core survey area, the optimal regulatory choices for the 2021 hunting
season are the liberal regulatory alternative in Canada and the moderate regulatory alternative in the United
States.

For pintails, the optimal regulatory strategy for the 2021 hunting season was calculated using: (1) an objective
of maximizing long-term cumulative harvest; (2) current pintail regulatory alternatives; and (3) current
population models and their relative weights. Based on a liberal regulatory alternative with a 1-bird daily
bag limit selected for the 2020 hunting season and the 2020 model prediction of 2.446 million pintails predicted
to settle at a mean latitude of 55.16 degrees, the optimal regulatory choice for the 2021 hunting season for
all four Flyways is the liberal regulatory alternative with a 1-bird daily bag limit.

For scaup, the optimal regulatory strategy for the 2021 hunting season was calculated using: (1) an objective
to achieve 95% of the maximum, long-term cumulative harvest; (2) current scaup regulatory alternatives;
and (3) updated model parameters and weights. Based on a restrictive regulatory alternative selected for the
2020 hunting season and a 2020 model prediction of 3.53 million scaup, the optimal regulatory choice for the
2021 hunting season for all four Flyways is the restrictive regulatory alternative.
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2 BACKGROUND

The annual process of setting duck-hunting regulations in the U.S. is based on a system of resource monitor-
ing, data analyses, and rule-making (Blohm 1989). Each year, monitoring activities such as aerial surveys,
preseason banding, and hunter questionnaires provide information on population size, habitat conditions,
and harvest levels. Data collected from these monitoring programs are analyzed each year, and proposals for
duck-hunting regulations are developed by the Flyway Councils, States, and USFWS. After extensive public
review, the USFWS announces regulatory guidelines within which States can set their hunting seasons.

In 1995, the USFWS adopted the concept of adaptive resource management (Walters 1986) for regulating
duck harvests in the U.S. This approach explicitly recognizes that the consequences of hunting regulations
cannot be predicted with certainty and provides a framework for making objective decisions in the face of
that uncertainty (Williams and Johnson 1995). Inherent in the adaptive approach is an awareness that
management performance can be maximized only if regulatory effects can be predicted reliably. Thus, adap-
tive management relies on an iterative cycle of monitoring, assessment, and decision-making to clarify the
relationships among hunting regulations, harvests, and waterfowl abundance (Johnson et al. 2016).

In regulating waterfowl harvests, managers face four fundamental sources of uncertainty (Nichols et al. 1995a,
Johnson et al. 1996, Williams et al. 1996):

(1) environmental variation – the temporal and spatial variation in weather conditions and other key
features of waterfowl habitat; an example is the annual change in the number of ponds in the Prairie
Pothole Region, where water conditions influence duck reproductive success;

(2) partial controllability – the ability of managers to control harvest only within limits; the harvest resulting
from a particular set of hunting regulations cannot be predicted with certainty because of variation in
weather conditions, timing of migration, hunter effort, and other factors;

(3) partial observability – the ability to estimate key population attributes (e.g., population size, reproduc-
tive rate, harvest) only within the precision afforded by extant monitoring programs; and

(4) structural uncertainty – an incomplete understanding of biological processes; a familiar example is
the long-standing debate about whether harvest is additive to other sources of mortality or whether
populations compensate for hunting losses through reduced natural mortality. Structural uncertainty
increases contentiousness in the decision-making process and decreases the extent to which managers
can meet long-term conservation goals.

AHM was developed as a systematic process for dealing objectively with these uncertainties. The key com-
ponents of AHM include (Johnson et al. 1993, Williams and Johnson 1995):

(1) a limited number of regulatory alternatives, which describe Flyway-specific season lengths, bag limits,
and framework dates;

(2) a set of population models describing various hypotheses about the effects of harvest and environmental
factors on waterfowl abundance;

(3) a measure of reliability (probability or “weight”) for each population model; and

(4) a mathematical description of the objective(s) of harvest management (i.e., an “objective function”),
by which alternative regulatory strategies can be compared.

These components are used in a stochastic optimization procedure to derive a regulatory strategy. A regula-
tory strategy specifies the optimal regulatory choice, with respect to the stated management objectives, for
each possible combination of breeding population size, environmental conditions, and model weights (Johnson
et al. 1997). The setting of annual hunting regulations then involves an iterative process:
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(1) each year, an optimal regulatory choice is identified based on resource and environmental conditions,
and on current model weights;

(2) after the regulatory decision is made, model-specific predictions for subsequent breeding population size
are determined;

(3) when monitoring data become available, model weights are increased to the extent that observations of
population size agree with predictions, and decreased to the extent that they disagree; and

(4) the new model weights are used to start another iteration of the process.

By iteratively updating model weights and optimizing regulatory choices, the process should eventually
identify which model is the best overall predictor of changes in population abundance. The process is optimal
in the sense that it provides the regulatory choice each year necessary to maximize management performance.
It is adaptive in the sense that the harvest strategy “evolves” to account for new knowledge generated by a
comparison of predicted and observed population sizes.

3 ADJUSTMENTS TO THE 2020 REGULATORY PROCESS

Due to the coronavirus disease 2019 (COVID-19) pandemic, the USFWS and their partners were unable
to perform the WBPHS and estimate waterfowl breeding populations as well as evaluate breeding habitat
conditions in the spring of 2020. As a result, the information requirements, assessment methodologies,
and decision protocols that typically define the annual regulatory process have required some modifications.
The lack of an observable population size has immediate implications for learning through AHM. Model
predictions for 2020 population responses cannot be compared to WBPHS estimates to update model weights.
Because of this lack of updating, the USFWS and the Flyway councils have agreed to use optimal harvest
policies calculated with model weights and model parameters based on the most recent information available
to inform waterfowl harvest decisions for the 2020 regulations process. These policies represent optimal
decisions based on our most recent observations and understanding of system dynamics. In the absence of
2020 breeding population information, the USFWS and Flyway councils have agreed to use predictions of
breeding population sizes and habitat conditions to determine regulatory decisions for the 2021-22 hunting
season. Current system models for which we have AHM decision frameworks were used to predict 2020
population sizes as a function of breeding population sizes, habitat conditions, harvest, and harvest rates
observed during the 2019–20 hunting seasons. For some state variables (e.g., Canadian ponds) or 2019
unobservable information (e.g., Canadian harvest), we used formal time series analyses methods (Hyndman
and Athanasopoulos 2018) to forecast these values. We provide the results of these forecasts in the body of
this report and include the analytical details in the attached appendices.

4 WATERFOWL STOCKS AND FLYWAY MANAGEMENT

Since its inception AHM has focused on the population dynamics and harvest potential of mallards, especially
those breeding in mid-continent North America. Mallards constitute a large portion of the total U.S. duck
harvest, and traditionally have been a reliable indicator of the status of many other species. Geographic
differences in the reproduction, mortality, and migrations of waterfowl stocks suggest that there may be
corresponding differences in optimal levels of sport harvest. The ability to regulate harvests of mallards
originating from various breeding areas is complicated, however, by the fact that a large degree of mixing
occurs during the hunting season. The challenge for managers, then, is to vary hunting regulations among
Flyways in a manner that recognizes each Flyway’s unique breeding-ground derivation of waterfowl stocks.
Of course, no Flyway receives waterfowl exclusively from one breeding area; therefore, Flyway-specific harvest
strategies ideally should account for multiple breeding stocks that are exposed to a common harvest.
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Figure 1 – Waterfowl Breeding Population and Habitat Survey (WBPHS) strata and state, provincial, and
territorial survey areas currently assigned to the mid-continent and western stocks of mallards and eastern
waterfowl stocks for the purposes of adaptive harvest management.

The optimization procedures used in AHM can account for breeding populations of waterfowl beyond the
mid-continent region, and for the manner in which these ducks distribute themselves among the Flyways
during the hunting season. An optimal approach would allow for Flyway-specific regulatory strategies, which
represent an average of the optimal harvest strategies for each contributing breeding stock weighted by the
relative size of each stock in the fall flight. This joint optimization of multiple stocks requires: (1) models of
population dynamics for all recognized stocks; (2) an objective function that accounts for harvest-management
goals for all stocks in the aggregate; and (3) decision rules allowing Flyway-specific regulatory choices. At
present, however, a joint optimization of western, mid-continent, and eastern stocks is not feasible due to
computational hurdles. However, our preliminary analyses suggest that the lack of a joint optimization does
not result in a significant decrease in management performance.

Currently, two stocks of mallards (mid-continent and western) and stocks of four different species of eastern
waterfowl populations (Atlantic Flyway multi-stock; hereafter ’multi-stock’) are recognized for the purposes
of AHM (Figure 1). We use a constrained approach to the optimization of these stocks’ harvest, in which
the regulatory strategy for the Mississippi and Central Flyways is based exclusively on the status of mid-
continent mallards and the Pacific Flyway regulatory strategy is based exclusively on the status of western
mallards. Historically, the Atlantic Flyway regulatory strategy was based exclusively on the status of eastern
mallards. In 2018, the Atlantic Flyway and the USFWS adopted a multi-stock AHM framework. As a result,
the Atlantic Flyway regulatory strategy is based exclusively on the status of American green-winged teal,
wood ducks, ring-necked ducks, and goldeneyes breeding in the Atlantic Flyway states and eastern Canada.
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Figure 2 – Population estimates of mid-continent mallards observed in the WBPHS (strata: 13–18, 20–50,
and 75–77) and the Great Lakes region (Michigan, Minnesota, and Wisconsin) from 1992 to 2019. Error bars
represent one standard error. The 2020 values are based on model predictions.

5 WATERFOWL POPULATION DYNAMICS

5.1 Mid-Continent Mallard Stock

Mid-continent mallards are defined as those breeding in WBPHS strata 13–18, 20–50, and 75–77, and in
the Great Lakes region (Michigan, Minnesota, and Wisconsin; see Figure 1). Estimates of this population
have varied from 6.3 to 11.9 million since 1992 (Table H.1, Figure 2). For 2020, we used each model in the
mid-continent mallard model set to predict the 2020 breeding population size and used the updated 2019
model weights to calculate a weighted average breeding population size of 8.34 million (SE = 1.43 million).
In addition, we used a formal time series analysis to forecast a 2020 breeding population of Great Lakes
region mallards equal to 0.73 million (SE = 0.12 million), see Appendix (D) for details. The total 2020
mid-continent mallard breeding population is predicted to be 9.07 million (SE = 1.43 million).

Details describing the set of population models for mid-continent mallards are provided in Appendix H. The
set consists of four alternatives, formed by the combination of two survival hypotheses (additive vs. compen-
satory hunting mortality) and two reproductive hypotheses (strongly vs. weakly density dependent). Relative
weights for the alternative models of mid-continent mallards changed little until all models under-predicted
the change in population size from 1998 to 1999, perhaps indicating there is a significant factor affecting
population dynamics that is absent from all four models (Figure 3). Updated model weights suggest greater
evidence for the additive-mortality models (72%) over those describing hunting mortality as compensatory
(28%). For most of the time frame, model weights have strongly favored the weakly density-dependent re-
productive models over the strongly density-dependent ones, with current model weights greater than 99%
and less than 1%, respectively. The reader is cautioned, however, that models can sometimes make reliable
predictions of population size for reasons having little to do with the biological hypotheses expressed therein
(Johnson et al. 2002).
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Figure 3 – Top panel: population estimates of mid-continent mallards observed in the WBPHS compared to
mid-continent mallard model set predictions (weighted average based on 2019 model weight updates) from 1996
to 2019. Error bars represent 95% confidence intervals. Bottom panel: mid-continent mallard model weights
(SaRw = additive mortality and weakly density-dependent reproduction, ScRw = compensatory mortality and
weakly density-dependent reproduction, SaRs = additive mortality and strongly density-dependent reproduction,
ScRs = compensatory mortality and strongly density-dependent reproduction). Model weights were assumed to
be equal in 1995 and model weight updates were not calculated for 2020.

5.2 Western Mallard Stock

Western mallards consist of 2 substocks and are defined as those birds breeding in Alaska (WBPHS strata
1–12) and those birds breeding in the southern Pacific Flyway (California, Oregon, Washington, and British
Columbia combined; see Figure 1). Estimates of these subpopulations have varied from 0.28 to 0.84 million
in Alaska since 1990 and 0.43 to 0.64 million in the southern Pacific Flyway since 2010 (Table I.1, Figure 4).
For 2020, we used the western mallard models and Bayesian estimation frameworks to predict a median
breeding-population size of 0.94 million (SE = 0.09 million), including 0.41 million (SE = 0.07 million) from
Alaska and 0.53 million (SE = 0.06 million) from the southern Pacific Flyway.

Details concerning the set of population models for western mallards are provided in Appendix I. To predict
changes in abundance we used a discrete logistic model, which combines reproduction and natural mortality
into a single parameter, r, the intrinsic rate of growth. This model assumes density-dependent growth,
which is regulated by the ratio of population size, N, to the carrying capacity of the environment, K (i.e.,
equilibrium population size in the absence of harvest). In the traditional formulation of the logistic model,
harvest mortality is completely additive and any compensation for hunting losses occurs as a result of density-
dependent responses beginning in the subsequent breeding season. To increase the model’s generality we
included a scaling parameter for harvest that allows for the possibility of compensation prior to the breeding
season. It is important to note, however, that this parameterization does not incorporate any hypothesized
mechanism for harvest compensation and, therefore, must be interpreted cautiously. We modeled Alaska
mallards independently of those in the southern Pacific Flyway because of differing population trajectories
(see Figure 4) and substantial differences in the distribution of band recoveries.

We used Bayesian estimation methods in combination with a state-space model that accounts explicitly for
both process and observation error in breeding population size (Meyer and Millar 1999). Breeding population
estimates of mallards in Alaska are available since 1955, but we had to limit the time series to 1990–2019
because of changes in survey methodology and insufficient band-recovery data. The logistic model and
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Figure 4 – Population estimates of western mallards observed in Alaska (WBPHS strata 1–12) and the southern
Pacific Flyway (California, Oregon, Washington, and British Columbia combined) from 1990 to 2019. Error bars
represent one standard error. The 2020 values are based on model predictions.

associated posterior parameter estimates provided a reasonable fit to the observed time series of Alaska
population estimates. The estimated median carrying capacity was 1.02 million and the intrinsic rate of
growth was 0.28. The posterior median estimate of the scaling parameter was 1.35. Breeding population
and harvest-rate data were available for California-Oregon mallards for the period 1992–2019. Because the
British Columbia survey did not begin until 2006 and the Washington survey was redesigned in 2010, we
imputed data in a Markov chain Monte Carlo (MCMC) framework from the beginning of the British Columbia
and Washington surveys back to 1992 (see details in Appendix I) to make the time series consistent for the
southern Pacific Flyway. The logistic model also provided a reasonable fit to these data. The estimated
median carrying capacity was 0.79 million, and the intrinsic rate of growth was 0.25. The posterior median
estimate of the scaling parameter was 0.46.

The AHM protocol for western mallards is structured similarly to that used for mid-continent mallards, in
which an optimal harvest strategy is based on the status of a single breeding stock (Alaska and southern
Pacific Flyway substocks) and harvest regulations in a single Flyway. Although the contribution of mid-
continent mallards to the Pacific Flyway harvest is significant, we believe an independent harvest strategy
for western mallards poses little risk to the mid-continent stock. Further analyses will be needed to confirm
this conclusion, and to better understand the potential effect of mid-continent mallard status on sustainable
hunting opportunities in the Pacific Flyway.

5.3 Atlantic Flyway Multi-Stock

For the purposes of the Atlantic Flyway multi-stock AHM framework, eastern waterfowl stocks are defined
as those breeding in eastern Canada and Maine (USFWS fixed-wing surveys in WBPHS strata 51-53, 56,
and 62-70; CWS helicopter plot surveys in WBPHS strata 51-52, 63-64, 66-68, and 70-72) and Atlantic
Flyway states from New Hampshire south to Virginia (AFBWS; Heusmann and Sauer 2000). These areas
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Figure 5 – Population estimates of American green-winged teal (AGWT), wood ducks (WODU), ring-necked
ducks (RNDU), and goldeneyes (GOLD) observed in eastern Canada (WBPHS strata 51–53, 56, 62–72) and U.S.
(Atlantic Flyway states) from 1998 to 2019. Error bars represent one standard error. The SE of the goldeneyes
estimate for 2013 is not reported due to insufficient counts. The 2020 values are based on model predictions.

have been consistently surveyed since 1998. Breeding population size estimates for American green-winged
teal, ring-necked ducks, and goldeneyes are derived annually by integrating USFWS and CWS survey data
from eastern Canada and Maine (WBPHS strata 51-53, 56, and 62-72; (Zimmerman et al. 2012, U.S. Fish
and Wildlife Service 2019b). Insufficient counts of American green-winged teal, ring-necked ducks, and
goldeneyes in the AFBWS preclude the inclusion of those areas in the population estimates for those species.
Breeding population size estimates for wood ducks in the Atlantic Flyway (Maine south to Florida) are
estimated by integrating data from the AFBWS and the Breeding Bird Survey (BBS; Zimmerman et al.
2015). Insufficient counts of wood ducks from the USFWS and CWS surveys in Maine and Canada preclude
incorporating those survey results into breeding population estimates. Estimates of the breeding population
size for American green-winged teal have varied from 0.30 to 0.46 million, wood ducks varied from 0.92 to
1.04 million, ring-necked ducks varied from 0.59 to 0.92 million, and goldeneyes varied from 0.44 to 0.85
million since 1998 (Table J.1, Figure 5). For 2020, we used the multi-stock population models and Bayesian
estimation frameworks to predict a median breeding population size of 0.35 million (SE = 0.04 million) for
American green-winged teal, 0.94 million (SE = 0.07 million) for wood ducks, 0.70 million (SE = 0.07 million)
for ring-necked ducks, and 0.58 million (SE = 0.10 million) for goldeneyes.

Details concerning the set of models used in Atlantic Flyway multi-stock AHM are provided in Appendix J.
Similar to the methods used in western mallard AHM, we used a discrete logistic model to represent eastern
waterfowl population and harvest dynamics and a state-space, Bayesian estimation framework to estimate
the population parameters and process variation. We modeled each stock independently and found that the
logistic model and associated posterior parameter estimates provided a reasonable fit to the observed time
series of eastern waterfowl stocks. The estimated median carrying capacities were 0.53, 1.56, 0.87, and 0.71
for American green-winged teal, wood ducks, ring-necked ducks, and goldeneyes, respectively. The posterior
median estimates of intrinsic rate of growth were 0.43, 0.39, 0.40, and 0.23 for American green-winged teal,
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wood ducks, ring-necked ducks, and goldeneyes, respectively.

6 HARVEST-MANAGEMENT OBJECTIVES

The basic harvest-management objective for mid-continent mallards is to maximize cumulative harvest over
the long term, which inherently requires perpetuation of a viable population. Moreover, this objective is
constrained to avoid regulations that could be expected to result in a subsequent population size below the
goal of the North American Waterfowl Management Plan (NAWMP). According to this constraint, the value
of harvest decreases proportionally as the difference between the goal and expected population size increases.
This balance of harvest and population objectives results in a regulatory strategy that is more conservative
than that for maximizing long-term harvest, but more liberal than a strategy to attain the NAWMP goal
(regardless of effects on hunting opportunity). The current objective for mid-continent mallards uses a
population goal of 8.5 million birds, which consists of 7.9 million mallards from the WBPHS (strata 13–18,
20–50, and 75–77) corresponding to the mallard population goal in the 1998 update of the NAWMP (less the
portion of the mallard goal comprised of birds breeding in Alaska) and a goal of 0.6 million for the combined
states of Michigan, Minnesota, and Wisconsin.

The harvest management objectives for western mallards and eastern waterfowl stocks do not consider
NAWMP goals or other established targets for desired population sizes. The management objective for
western mallards is to maximize long-term cumulative (i.e., sustainable) harvest, and the objective for east-
ern waterfowl stocks is to attain 98% of the maximum, long-term cumulative harvest for the aggregate of the
four species.

7 REGULATORY ALTERNATIVES

7.1 Evolution of Alternatives

When AHM was first implemented in 1995, three regulatory alternatives characterized as liberal, moderate,
and restrictive were defined based on regulations used during 1979–1984, 1985–1987, and 1988–1993, respec-
tively. These regulatory alternatives also were considered for the 1996 hunting season. In 1997, the regulatory
alternatives were modified to include: (1) the addition of a very-restrictive alternative; (2) additional days
and a higher duck bag limit in the moderate and liberal alternatives; and (3) an increase in the bag limit of
hen mallards in the moderate and liberal alternatives. In 2002, the USFWS further modified the moderate
and liberal alternatives to include extensions of approximately one week in both the opening and closing
framework dates. During the 2019–2020 regulatory process, closing dates for all four Flyways were set to 31
January for all regulatory alternatives to comply with the John D. Dingell, Jr. Conservation, Management,
and Recreation Act.

In 2003, the very-restrictive alternative was eliminated at the request of the Flyway Councils. Expected
harvest rates under the very-restrictive alternative did not differ significantly from those under the restrictive
alternative, and the very-restrictive alternative was expected to be prescribed for <5% of all hunting seasons.
Also in 2003, at the request of the Flyway Councils the USFWS agreed to exclude closed duck-hunting seasons
from the AHM protocol when the population size of mid-continent mallards (as defined in 2003: WBPHS
strata 1–18, 20–50, and 75–77 plus the Great Lakes region) was≥5.5 million. Based on our original assessment,
closed hunting seasons did not appear to be necessary from the perspective of sustainable harvesting when
the mid-continent mallard population exceeded this level. The impact of maintaining open seasons above this
level also appeared negligible for other mid-continent duck species, as based on population models developed
by Johnson (2003).
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In 2008, the mid-continent mallard stock was redefined to exclude mallards breeding in Alaska, necessitating
a re-scaling of the closed-season constraint. Initially, we attempted to adjust the original 5.5 million closure
threshold by subtracting out the 1985 Alaska breeding population estimate, which was the year upon which
the original closed season constraint was based. Our initial re-scaling resulted in a new threshold equal to
5.25 million. Simulations based on optimal policies using this revised closed season constraint suggested that
the Mississippi and Central Flyways would experience a 70% increase in the frequency of closed seasons. At
that time, we agreed to consider alternative re-scalings in order to minimize the effects on the mid-continent
mallard strategy and account for the increase in mean breeding population sizes in Alaska over the past
several decades. Based on this assessment, we recommended a revised closed season constraint of 4.75 million
which resulted in a strategy performance equivalent to the performance expected prior to the re-definition of
the mid-continent mallard stock. Because the performance of the revised strategy is essentially unchanged
from the original strategy, we believe it will have no greater impact on other duck stocks in the Mississippi
and Central Flyways. However, complete- or partial-season closures for particular species or populations
could still be deemed necessary in some situations regardless of the status of mid-continent mallards.

For the development of the multi-stock AHM framework in the Atlantic Flyway, the USFWS and Atlantic Fly-
way decided to keep the same overall bag limits and season lengths that were used for eastern mallard AHM.
Species-specific regulations are then based on harvest strategies informed by existing decision frameworks
(e.g., black duck AHM).

At the time this report was prepared, the regulatory packages for the 2021-22 seasons had not been finalized
by the U.S. Fish and Wildlife Service. However, we do not expect any changes from the 2020-21 packages.
Therefore, optimal strategies were formulated using the 2020-21 packages and are referred to as “current”
packages in subsequent text. Details of the regulatory alternatives for each Flyway are provided in Table 1.

7.2 Regulation-Specific Harvest Rates

Harvest rates of mallards associated with each of the open-season regulatory alternatives were initially pre-
dicted using harvest-rate estimates from 1979–1984, which were adjusted to reflect current hunter numbers
and contemporary specifications of season lengths and bag limits. In the case of closed seasons in the United
States, we assumed rates of harvest would be similar to those observed in Canada during 1988–1993, which
was a period of restrictive regulations both in Canada and the United States. All harvest-rate predictions
were based only in part on band-recovery data, and relied heavily on models of hunting effort and success
derived from hunter surveys (Appendix C in U.S. Fish and Wildlife Service 2002). As such, these predictions
had large sampling variances and their accuracy was uncertain.

In 2002, we began using Bayesian statistical methods for improving regulation-specific predictions of harvest
rates, including predictions of the effects of framework-date extensions. Essentially, the idea is to use existing
(prior) information to develop initial harvest-rate predictions (as above), to make regulatory decisions based
on those predictions, and then to observe realized harvest rates. Those observed harvest rates, in turn, are
treated as new sources of information for calculating updated (posterior) predictions. Bayesian methods are
attractive because they provide a quantitative, formal, and an intuitive approach to adaptive management.

Annual harvest rate estimates for mid-continent and western mallards and eastern stocks of American green-
winged teal and wood ducks are updated with band-recovery information from a cooperative banding program
between the USFWS and CWS, along with state, provincial, and other participating partners. Recovery rate
estimates from these data are adjusted with reporting rate probabilities resulting from recent reward band
studies (Boomer et al. 2013, Garrettson et al. 2013). For mid-continent mallards, we have empirical estimates
of harvest rate from the recent period of liberal hunting regulations (1998–2019). Bayesian methods allow us
to combine these estimates with our prior predictions to provide updated estimates of harvest rates expected
under the liberal regulatory alternative. Moreover, in the absence of experience (so far) with the restrictive
and moderate regulatory alternatives, we reasoned that our initial predictions of harvest rates associated with
those alternatives should be re-scaled based on a comparison of predicted and observed harvest rates under
the liberal regulatory alternative. In other words, if observed harvest rates under the liberal alternative were
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Table 1 – Current regulatory alternatives for the duck-hunting season.

Regulation Flyway

Atlantica Mississippi Centralb Pacificc

Shooting Hours one-half hour before sunrise to sunset

Opening Date

Restrictive October 1 Saturday nearest October 1

Moderate
Saturday nearest September 24

Liberal

Closing Date

Restrictive

Moderate January 31

Liberal

Season Length (days)

Restrictive 30 30 39 60

Moderate 45 45 60 86

Liberal 60 60 74 107

Bag Limit (total / mallardd / hen mallard)

Restrictive 3 / - / - 3 / 2 / 1 3 / 3 / 1 4 / 3 / 1

Moderate 6 / - / - 6 / 4 / 1 6 / 5 / 1 7 / 5 / 2

Liberal 6 / - / - 6 / 4 / 2 6 / 5 / 2 7 / 7 / 2
a The states of Maine, Massachusetts, Connecticut, Pennsylvania, New Jersey, Maryland, Delaware, and North
Carolina are permitted to exclude Sundays, which are closed to hunting, from their total allotment of season days.

b The High Plains Mallard Management Unit is allowed 12, 23, and 23 extra days in the restrictive, moderate, and
liberal alternatives, respectively.

c The Columbia Basin Mallard Management Unit is allowed 7 extra days in the restrictive and moderate alternatives.
d For the Atlantic Flyway, the mallard bag limit is not prescribed by the regulatory alternative under the Multi-stock
AHM protocol.
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10% less than predicted, then we might also expect that the mean harvest rate under the moderate alternative
would be 10% less than predicted. The appropriate scaling factors currently are based exclusively on prior
beliefs about differences in mean harvest rate among regulatory alternatives, but they will be updated once
we have experience with something other than the liberal alternative. A detailed description of the analytical
framework for modeling mallard harvest rates is provided in Appendix K.

Our models of regulation-specific harvest rates also allow for the marginal effect of framework-date extensions
in the moderate and liberal alternatives. A previous analysis by the U.S. Fish and Wildlife Service (2001)
suggested that implementation of framework-date extensions might be expected to increase the harvest rate of
mid-continent mallards by about 15%, or in absolute terms by about 0.02 (SD = 0.01). Based on the observed
harvest rates during the 2002–2019 hunting seasons, the updated (posterior) estimate of the marginal change
in harvest rate attributable to the framework-date extension is 0.004 (SD = 0.006). The estimated effect of
the framework-date extension has been to increase harvest rate of mid-continent mallards by about 3% over
what would otherwise be expected in the liberal alternative. However, the reader is strongly cautioned that
reliable inference about the marginal effect of framework-date extensions ultimately depends on a rigorous
experimental design (including controls and random application of treatments).

Current predictions of harvest rates of adult-male mid-continent mallards associated with each of the regu-
latory alternatives are provided in Table 2. Predictions of harvest rates for the other age and sex cohorts are
based on the historical ratios of cohort-specific harvest rates to adult-male rates (Runge et al. 2002). These
ratios are considered fixed at their long-term averages and are 1.5407, 0.7191, and 1.1175 for young males,
adult females, and young females, respectively. We make the simplifying assumption that the harvest rates
of mid-continent mallards depend solely on the regulatory choice in the Mississippi and Central Flyways.

Based on available estimates of harvest rates of mallards banded in California and Oregon during 1990–1995
and 2002–2007, there was no apparent relationship between harvest rate and regulatory changes in the Pacific
Flyway. This is unusual given our ability to document such a relationship in other mallard stocks and in other
species. We note, however, that the period 2002–2007 was comprised of both stable and liberal regulations
and harvest rate estimates were based solely on reward bands. Regulations were relatively restrictive during
most of the earlier period and harvest rates were estimated based on standard bands using reporting rates
estimated from reward banding during 1987–1988. Additionally, 1993–1995 were transition years in which
full-address and toll-free bands were being introduced and information to assess their reporting rates (and
their effects on reporting rates of standard bands) is limited. Thus, the two periods in which we wish to
compare harvest rates are characterized not only by changes in regulations, but also in estimation methods.

Consequently, we lack a sound empirical basis for predicting harvest rates of western mallards associated
with current regulatory alternatives other than liberal in the Pacific Flyway. In 2009, we began using
Bayesian statistical methods for improving regulation-specific predictions of harvest rates (see Appendix K).
The methodology is analogous to that currently in use for mid-continent mallards except that the marginal
effect of framework date extensions in moderate and liberal alternatives is inestimable because there are no
data prior to implementation of extensions. In 2008, we specified prior regulation-specific harvest rates of
0.01, 0.06, 0.09, and 0.11 with associated standard deviations of 0.003, 0.02, 0.03, and 0.03 for the closed,

Table 2 – Predictions of harvest rates of adult male, mid-continent and western mallards expected with appli-
cation of the current regulatory alternatives in the Mississippi, Central and Pacific Flyways.

Mid-continent Western

Regulatory Alternative Mean SD Mean SD

Closed (U.S.) 0.009 0.002 0.009 0.018

Restrictive 0.054 0.013 0.069 0.017

Moderate 0.094 0.021 0.115 0.029

Liberal 0.111 0.017 0.135 0.027
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restrictive, moderate, and liberal alternatives, respectively. The prior for the liberal regulation was then
updated in 2011 with a harvest rate of 0.12 and standard deviation of 0.04. The harvest rates for the liberal
alternative were based on empirical estimates realized under the current liberal alternative during 2002–
2007 and determined from adult male mallards banded with reward and standard bands adjusted for band
reporting rates in the southern Pacific Flyway. The development of priors was based on banding information
from California and Oregon data only. Recently, we assessed the band-recovery data from Washington, Idaho,
and British Columbia and found that the addition of these bands had a negligible influence on harvest rate
estimates of western mallards. As a result, we have included Washington, Idaho, and British Columbia band-
recovery information in our annual updates to western mallard harvest rate distributions. Harvest rates for
the moderate and restrictive alternatives were based on the proportional (0.85 and 0.51) difference in harvest
rates expected for mid-continent mallards under the respective alternatives. Finally, harvest rate for the
closed alternative was based on what we might realize with a closed season in the United States (including
Alaska) and a very restrictive season in Canada, similar to that for mid-continent mallards. A relatively
large standard deviation (CV = 0.3) was chosen to reflect greater uncertainty about the means than that
for mid-continent mallards (CV = 0.2). Current predictions of harvest rates of adult male western mallards
associated with each regulatory alternative are provided in Table 2.

The harvest rates expected under the liberal season for the four populations associated with the Atlantic
Flyway’s multi-stock AHM were based on the average observed harvest rate from 1998–2014 for each species.
The harvest rates for American green-winged teal and wood ducks were based on preseason banding and
dead recovery data adjusted for reporting rates similar to mid-continent and western mallards. Because the
discrete logistic model used for these species does not include age or sex structure, banding data for all cohorts
were pooled to estimate an overall harvest rate. Insufficient banding data precluded the estimation of harvest
rates for ring-necked ducks and goldeneyes in the Atlantic Flyway based on band recovery information, so
harvest estimates from the Harvest Information Program were used to monitor harvest levels for these species
in the multi-stock framework. Specifically, we estimated a fall population size from the discrete logistic model
and calculated a harvest rate as the total harvest divided by the fall population size for ring-necked ducks
and goldeneyes. The estimated harvest rates for each species under each regulation are listed in Table 3.

8 OPTIMAL REGULATORY STRATEGIES

The adoption of the preferred alternative specified in SEIS 2013 (U.S. Department of the Interior 2013) re-
sulted in a new decision process based on a single regulatory meeting in the fall of year t to inform regulations
for the next year’s hunting season in year t + 1 (Appendix B). As a result, regulatory decisions are made in
advance of observing the status of waterfowl breeding populations (BPOP) and habitat conditions during the
spring prior to the upcoming hunting season. With the implementation of the SEIS, pre-survey regulatory
decisions introduce a lag in the AHM process where model weight updating and state-dependent decision
making are now governed by the previous year’s monitoring information. Given that the original AHM pro-
tocols and decision frameworks were structured to inform decisions based on current monitoring information

Table 3 – Predictions of harvest rates of American green-winged teal (AGWT), wood ducks (WODU), ring-necked
ducks (RNDU), and goldeneyes (GOLD) expected under closed, restrictive, moderate, and liberal regulations in
the Atlantic Flyway.

Regulatory Alternative AGWT WODU RNDU GOLD

Closed (U.S.) 0.017 0.006 0.025 0.005

Restrictive 0.057 0.075 0.058 0.008

Moderate 0.089 0.091 0.097 0.015

Liberal 0.117 0.124 0.131 0.029
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(i.e., post-survey), several technical adjustments and a new optimization framework were developed to sup-
port a pre-survey decision process. We revised the optimization procedures used to derive harvest policies
by structuring the decision process based on the information that is available at the time of the decision,
which includes the previous year’s observation of the system, the previous year’s regulation, and the latest
update of model weights. Based on this new formulation, the prediction of future system states and harvest
values now account for all possible outcomes from previous decisions, and as a result, the optimal policy is
now conditional on the previous year’s regulation. We modified the optimization code used for each AHM
decision framework in order to continue to use stochastic dynamic programming (Williams et al. 2002) to
derive optimal harvest policies while accounting for the pre-survey decision process (Johnson et al. 2016).
Adjustments to these optimization procedures necessitated considerations of how closed season constraints
and different objective functions were represented. Currently, we have implemented the closed season con-
straints and utility devaluation for mid-continent mallards conditional on the last observed state. With the
cooperation of the Harvest Management Working Group, we are exploring alternative ways to implement
these constraints that would be more consistent with the intent of the original specification (i.e., post-survey
decision framework). A comparison of optimization and simulation results from pre- and post-survey AHM
protocols suggested that the adjustments to the optimization procedures to account for changes in decision
timing were not expected to result in major changes in expected management performance (Boomer et al.
2015). Updated optimization code was developed with the MDPSOLVE© (Fackler 2011) software tools
implemented in MATLAB (2016).

Using stochastic dynamic programming (Williams et al. 2002) to evaluate a pre-survey decision process,
we calculated the optimal regulatory strategy for the Mississippi and Central Flyways based on: (1) the
dual objectives of maximizing long-term cumulative harvest and achieving a population goal of 8.5 million
mid-continent mallards; (2) current regulatory alternatives and the closed-season constraint; and (3) current
mid-continent mallard population models and associated weights. The resulting regulatory strategy includes
options conditional on the regulatory alternative selected the previous hunting season (Figure 6). Note that
prescriptions for closed seasons in this strategy represent resource conditions that are insufficient to support
one of the current regulatory alternatives, given current harvest-management objectives and constraints.
However, closed seasons under all of these conditions are not necessarily required for long-term resource pro-
tection, and simply reflect the NAWMP population goal and the nature of the current regulatory alternatives.
Assuming that harvest management adhered to this strategy (and that current model weights accurately re-
flect population dynamics), breeding-population size would be expected to average 7.15 million (SD = 1.59
million). Based on a liberal regulatory alternative selected for the 2020 hunting season, the predicted 2020
breeding population size of 9.07 million mid-continent mallards and 3.40 million ponds predicted in Prairie
Canada, the optimal choice for the 2021 hunting season in the Mississippi and Central Flyways is the liberal
regulatory alternative (Table 4).

We calculated the optimal regulatory strategy for the Pacific Flyway based on: (1) an objective to maximize
long-term cumulative harvest; (2) current regulatory alternatives; and (3) current population models and
parameter estimates. The resulting regulatory strategy includes options conditional on the regulatory alter-
native selected the previous hunting season (Figure 7). We simulated the use of this regulatory strategy to
determine expected performance characteristics. Assuming that harvest management adhered to this strategy
(and that current model parameters accurately reflect population dynamics), breeding-population size would
be expected to average 0.54 million (SD = 0.07 million) in Alaska and 0.57 million (SD = 0.05 million) in
the southern Pacific Flyway. Based on a liberal regulatory alternative selected for the 2020 hunting season, a
predicted 2020 breeding population size of 0.41 million mallards for Alaska, and 0.53 million for the southern
Pacific Flyway, the optimal choice for the 2021 hunting season in the Pacific Flyway is the liberal regulatory
alternative (Table 5).

We calculated the optimal regulatory strategy for the Atlantic Flyway based on: (1) an objective to achieve
98% of the maximum, long-term cumulative harvest for the aggregate of the four species; (2) current reg-
ulatory alternatives; and (3) current population models and parameter estimates. The resulting regulatory
strategy includes options conditional on the regulatory alternative selected the previous hunting season (Fig-
ure 8). We simulated the use of this regulatory strategy to determine expected performance characteristics.
Assuming that harvest management adhered to this strategy (and that the population models accurately

21



Canadian ponds in millions

M
al

la
rd

 B
P

O
P

 in
 m

ill
io

ns

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7

Previous: Closed

1 2 3 4 5 6 7

Previous: Restrictive

1 2 3 4 5 6 7

Previous: Moderate

1 2 3 4 5 6 7

Previous: Liberal

Reg

 C

 

 R

 

 M

 

 L

 

Figure 6 – Mid-continent mallard pre-survey harvest policies derived with updated optimization methods that
account for changes in decision timing associated with adaptive harvest management protocols specified in the
SEIS 2013. Harvest policies were calculated with current regulatory alternatives (including the closed-season con-
straint), mid-continent mallard models and weights, and the dual objectives of maximizing long-term cumulative
harvest and achieving a population goal of 8.5 million mallards.
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Figure 7 – Western mallard pre-survey harvest policies derived with updated optimization methods that account
for changes in decision timing associated with adaptive harvest management protocols specified under the SEIS
2013. This strategy is based on current regulatory alternatives, updated (1990–2019) western mallard population
models and parameter estimates, and an objective to maximize long-term cumulative harvest.
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Table 4 – Optimal regulatory strategya for the Mississippi and Central Flyways for the 2021 hunting season
predicated on a liberal alternative selected the previous year (2020). This strategy is based on the current
regulatory alternatives (including the closed-season constraint), mid-continent mallard models and weights, and
the dual objectives of maximizing long-term cumulative harvest and achieving a population goal of 8.5 million
mallards. The shaded cell indicates the regulatory prescription for the 2021 hunting season.

Pondsc

BPOPb 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00

≤4.50 C C C C C C C C C C C C C C C C C C C

4.75 R R R R R R R R R R R R R R R R R R R

5.00 R R R R R R R R R R R R R R R R R R R

5.25 R R R R R R R R R R R R R R R R R R R

5.50 R R R R R R R R R R R R R R R R R R R

5.75 R R R R R R R R R R R R R R R R R R R

6.00 R R R R R R R R R R R R R R R R R R R

6.25 R R R R R R R R R R R R R R R R R R R

6.50 R R R R R R R R R R R R R R R R M L L

6.75 R R R R R R R R R R R R R M L L L L L

7.00 R R R R R R R R R R M L L L L L L L L

7.25 R R R R R R R R M L L L L L L L L L L

7.50 R R R R R R L L L L L L L L L L L L L

7.75 R R R R L L L L L L L L L L L L L L L

8.00 R R L L L L L L L L L L L L L L L L L

8.25 M L L L L L L L L L L L L L L L L L L

≥8.50 L L L L L L L L L L L L L L L L L L L

a C = closed season, R = restrictive, M = moderate, L = liberal.
b Mallard breeding population size (in millions) observed in the WBPHS (strata 13–18, 20–50, 75–77) and Michigan,
Minnesota, and Wisconsin.

c Ponds (in millions) observed in Prairie Canada in May.
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Table 5 – Optimal regulatory strategya for the Pacific Flyway for the 2021 hunting season predicated on a
liberal alternative selected the previous year (2020). This strategy is based on current regulatory alternatives,
updated (1990–2019) western mallard population models and parameter estimates, and an objective to maximize
long-term cumulative harvest. The shaded cell indicates the regulatory prescription for 2021.

Southern
Pacific Flyway
BPOPc

Alaska BPOPb

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 ≥0.75

0.05 C C C C C C C C C C C R R M L

0.10 C C C C C C C C C C R R L L L

0.15 C C C C C C C C R R L L L L L

0.20 C C C C C C R R L L L L L L L

0.25 C C C C C R L L L L L L L L L

0.30 C C C R R L L L L L L L L L L

0.35 C C R R L L L L L L L L L L L

0.40 C R M L L L L L L L L L L L L

0.45 R R L L L L L L L L L L L L L

0.50 M L L L L L L L L L L L L L L

0.55 L L L L L L L L L L L L L L L

0.60 L L L L L L L L L L L L L L L

0.65 L L L L L L L L L L L L L L L

0.70 L L L L L L L L L L L L L L L

≥0.75 L L L L L L L L L L L L L L L

a C = closed season, R = restrictive, M = moderate, L = liberal.
b Estimated number of mallards (in millions) observed in Alaska (WBPHS strata 1–12).
c Estimated number of mallards (in millions) observed in the southern Pacific Flyway (California, Oregon, Washington, and
British Columbia combined).
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Figure 8 – A graphical representation of the Atlantic Flyway multi-stock pre-survey harvest policies derived
with updated optimization methods that account for changes in decision timing associated with adaptive harvest
management protocols specified under the SEIS 2013. This strategy is based on current regulatory alterna-
tives, updated (1998–2019) population models and parameter estimates, and an objective to achieve 98% of the
maximum, long-term cumulative harvest of the aggregate stocks. The classification trees are a statistical repre-
sentation of the policies and do not depict all possible combinations of breeding population states and regulatory
alternatives.

reflect population dynamics), breeding-population sizes would be expected to average 0.37 (SD = 0.03), 1.02
(SD = 0.07), 0.56 (SD = 0.04), and 0.62 (SD = 0.10) million for American green-winged teal, wood ducks,
ring-necked ducks, and goldeneyes, respectively. Based on a liberal regulatory alternative selected for the
2020 hunting season and predicted 2020 breeding population sizes of 0.35 million American green-winged
teal, 0.94 million wood ducks, 0.70 million ring-necked ducks, and 0.58 million goldeneyes, the optimal choice
for 2021 hunting season in the Atlantic Flyway is the liberal regulatory alternative (see Table 6).

9 APPLICATION OF ADAPTIVE HARVEST MANAGEMENT
CONCEPTS TO OTHER STOCKS

The USFWS is working to apply the principles and tools of AHM to improve decision-making for several
other stocks of waterfowl. Below, we provide AHM updates for the 2021 hunting season that are currently
informing American black duck, northern pintail, and scaup harvest management decisions.

9.1 American Black Duck

Federal, state, and provincial agencies in the U.S. and Canada agreed that an international harvest strategy
for black ducks is needed because the resource is valued by both countries and both countries have the
ability to influence the resource through harvest. The partners also agreed a harvest strategy should be
developed with an AHM approach based on the integrated breeding-ground survey data (Zimmerman et al.
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Table 6 – Optimal regulatory strategya for the Atlantic Flyway for the 2021 hunting season. This strategy
is based on current regulatory alternatives, species-specific population models and parameter estimates, and an
objective to achieve 98% of the maximum, long-term cumulative harvest of the aggregate stocks. Predicated on
a liberal alternative selected the previous year (2020), the shaded cells indicate current breeding population sizes
and the regulatory prescription for 2021.

Speciesb Population (in millions)

AGWT WODU RNDU GOLD Regulation

0.364 0.622 0.684 0.69 M

0.364 0.622 0.83 0.454 M

0.364 0.622 0.83 0.572 M

0.364 0.622 0.83 0.69 M

0.364 0.883 0.538 0.454 M

0.364 0.883 0.538 0.572 M

0.364 0.883 0.538 0.69 L

0.364 0.883 0.684 0.454 L

0.364 0.883 0.684 0.572 L

0.364 0.883 0.684 0.69 L

0.364 0.883 0.83 0.454 L

0.364 0.883 0.83 0.572 L

0.364 0.883 0.83 0.69 L

0.364 1.144 0.538 0.454 L

0.364 1.144 0.538 0.572 L

0.364 1.144 0.538 0.69 L

0.364 1.144 0.684 0.454 L

a C = closed season, M = moderate, R = restrictive, L = liberal.
b AGWT = American green-winged teal, WODU = wood duck, RNDU = ring-necked duck, GOLD = goldeneyes.
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2012, U.S. Fish and Wildlife Service 2019b). Finally, the strategy should also provide a formal approach to
determining appropriate harvest levels and fair allocation of the harvest between countries (Conroy 2010).

The overall goals of the Black Duck International Harvest strategy include:

(1) maintain a black duck population that meets legal mandates and provides consumptive and non-
consumptive use commensurate with habitat carrying capacity;

(2) maintain societal values associated with the hunting tradition; and

(3) maintain equitable access to the black duck resource in Canada and the U.S.

The objectives of the harvest strategy are to achieve 98% of the long-term cumulative harvest and to share
the allocated harvest (i.e., parity) equitably between countries. Historically, the realized allocation of harvest
between Canada and the U.S. has ranged from 40% to 60% in either country. Recognizing the historical
allocation and acknowledging incomplete control over harvest, parity is achieved through a constraint which
discounts combinations of country-specific harvest rates that are expected to result in allocation of harvest
that is >50% in one country. The constraint applies a mild penalty on country-specific harvest options
that result in one country receiving >50% but <60% of the harvest allocation and a stronger discount on
combinations resulting in one country receiving >60% of the harvest allocation (Figure 9). The goals and
objectives of the black duck AHM framework were developed through a formal consultation process with
representatives from the CWS, USFWS, Atlantic Flyway Council and Mississippi Flyway Council.

Country-specific harvest opportunities were determined from a set of expected harvest rate distributions
defined as regulatory alternatives. Canada has developed 4 regulatory alternatives (liberal, moderate, re-
strictive and closed); and the U.S. has developed 3 (moderate, restrictive, closed; Figure 10). Expected
harvest rates under each regulatory alternative are updated annually using Bayesian methods and modeling
the mean harvest rate and variance using a beta-binomial distribution. The beta-binomial distribution is
updated annually conditional on the country specific regulatory alternative implemented the previous year.

Figure 9 – Functional form of the harvest parity constraint designed to allocate allowable black duck harvest
equally between the U.S. and Canada. The value of p is the proportion of harvest allocated to one country, and
U is the utility of a specific combination of country-specific harvest options in achieving the objective of black
duck adaptive harvest management.
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Figure 10 – Predictive harvest rate distributions for adult male black ducks expected under the application of
the current regulatory alternatives in Canada (left) and the U.S. (right).

Since the implementation of black duck AHM, neither the closed alternative (in either country) or the re-
strictive alternative in Canada have been implemented. Therefore, we assume a prior distribution with mean
harvest rate of 0.01 (±0.001 SE) and 0.021 (±0.0014 SE) for the closed and Canadian restrictive alternatives,
respectively. The closed alternative requires either country to prohibit black duck harvest. The expected
harvest rates (and associated variances) for the 2021 Canadian liberal and U.S. moderate alternatives are
based on prior distributions and banding data resulting in broad, posterior harvest rate distributions (see
Figure 10). Canada and the U.S. will determine, independently, appropriate regulations designed to achieve
their prescribed harvest targets as identified under the regulatory alternatives. Regulations will vary indepen-
dently between countries based on the status of the population and optimal strategy as determined through
the AHM protocol.

The AHM model is based on spring breeding-ground abundance as estimated by the integrated Eastern
Waterfowl Survey from the core survey area. The core survey area is comprised of USFWS survey strata 51,
52, 63, 64, 66, 67, 68, 70, 71, and 72. The American black duck population measure is based on “indicated
pairs”, defined as 1 individual observed equals 1 indicated pair whereas a group of 2 is assumed to represent
1.5 indicated pairs. Fall age ratios are estimated using harvest age ratios derived from the USFWS and CWS
parts collection surveys, adjusted for differential vulnerability. Age- and sex-specific harvest rates are based
on direct recoveries of black ducks banded in Canada, 1990–2019, adjusted by country- and band inscription-
specific reporting rates. Direct and indirect band recoveries of adult and juvenile male and female black ducks
banded in Canada, 1990–2019, were used to estimate age- and sex-specific annual survival rates.

The black duck AHM framework is based on two hypotheses regarding black duck population ecology. The
first hypothesis states that black duck population growth is limited by competition with mallards during the
breeding season. As the effect of mallard competition (c2 ) increases, black duck productivity decreases which
then limits black duck population growth. The second hypothesis states that black duck population growth
is limited by harvest because hunting mortality is additive to natural mortality. As the effect of harvest
mortality, or additivity (a1 ) increases, annual survival decreases and limits black duck population growth.
The current AHM framework incorporates each of these hypotheses into a single parametric (i.e., regression)
model. Estimates of each parameter (i.e., mallard competition and additive hunting mortality) are updated
with current year’s monitoring data (Figure 11) and are used to establish annual harvest regulations. For
2020, we used the black duck integrated population model with the most recent information to predict a
breeding population of 0.50 million. We then forecasted the 2020 eastern mallard population with recent
data (see Appendix E) which resulted in a predicted value equal to 0.39 million.

Optimal country-specific regulatory strategies for the 2021 hunting season were calculated using: (1) the
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black duck harvest objective (98% of long-term cumulative harvest); (2) current, country-specific regulatory
alternatives (see Figure 10); (3) current parameter estimates for mallard competition and additive mortality
(see Figure 11); (4) 2020 median predictions of 0.50 million breeding black ducks and 0.39 million breeding
mallards in the core survey area; and (5) the country-specific 2020 regulations (liberal in Canada and moderate
in the U.S). The optimal regulatory choices are the liberal alternative in Canada and moderate alternative
in the U.S. (Table 7).

9.2 Northern Pintails

In 2010, the Flyway Councils and the USFWS established an adaptive management framework to inform
northern pintail harvest decisions. The current protocol is based on: (1) an explicit harvest management
objective; (2) regulatory alternatives that do not permit partial seasons (i.e., shorter pintail season within the
general duck season) or 3-bird daily bag limits; (3) a formal optimization process using stochastic dynamic
programming (Williams et al. 2002); (4) harvest allocation on a national rather than Flyway-by-Flyway basis,
with no explicit attempt to achieve a particular allocation of harvest among Flyways; and (5) current system
models. Details describing the historical development of the technical and policy elements of the northern
pintail adaptive management framework can be found in the northern pintail harvest strategy document
(U.S. Fish and Wildlife Service 2010).

The harvest-management objective for the northern pintail population is to maximize long-term cumulative
harvest, which inherently requires perpetuation of a viable population. This objective is specified under
a constraint that provides for an open hunting season when the observed breeding population is ≥1.75
million birds (based on the lowest observed breeding population size since 1985 of 1.79 million birds in 2002).
The single objective and constraint, in conjunction with the regulatory alternatives were determined after
an intensive consultation process with the waterfowl management community. The resulting management
objective serves to integrate and balance multiple competing objectives for pintail harvest management,
including minimizing closed seasons, eliminating partial seasons, maximizing seasons with liberal season
length and greater than 1-bird daily bag limit, and minimizing large changes in regulations.

The adaptive management protocol considers a range of regulatory alternatives for pintail harvest manage-
ment that includes a closed season, 1-bird daily bag limit, or 2-bird daily bag limit. The maximum pintail
season length depends on the general duck season framework (characterized as liberal, moderate, or restrictive
and varying by Flyway) specified by mallard or multi-stock AHM. An optimal pintail regulation is calculated
under the assumption of a liberal mallard or multi-stock season length in all Flyways. However, if the season
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Figure 11 – Updated median estimates of black duck harvest additivity (a1 ; top panel) and mallard competition
(c2 ; bottom panel) parameters over time. Error bars represent 95% credibility intervals.
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Table 7 – Black duck optimal regulatory strategiesa for Canada and the United States for the 2021 hunting
season predicated on a liberal alternative selected by Canada and a moderate alternative selected by the United
States the previous year (2020). This strategy is based on current regulatory alternatives, black duck model, and
the objective of achieving 98% of the maximum, long-term cumulative harvest and to share the allocated harvest
(i.e., parity) equitably between countries. The shaded cell indicates the regulatory prescription for each country
in 2021.

Canada MALLb

ABDUb 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.05 C C C C C C C C C C C C C C C C C C

0.10 M M C C C C C C C C C C C C C C C C

0.15 L M M M M M M M M M M M M M M M M M

0.20 L L L L L L L M M M M M M M M M M M

0.25 L L L L L L L L L L L L L L L L L L

0.30 L L L L L L L L L L L L L L L L L L

0.35 L L L L L L L L L L L L L L L L L L

0.40 L L L L L L L L L L L L L L L L L L

0.45 L L L L L L L L L L L L L L L L L L

0.50 L L L L L L L L L L L L L L L L L L

0.55 L L L L L L L L L L L L L L L L L L

0.60 L L L L L L L L L L L L L L L L L L

0.65 L L L L L L L L L L L L L L L L L L

0.70 L L L L L L L L L L L L L L L L L L

0.75 L L L L L L L L L L L L L L L L L L

0.80 L L L L L L L L L L L L L L L L L L

United States MALLb

ABDUb 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.05 C C C C C C C C C C C C C C C C C C

0.10 R R C C C C C C C C C C C C C C C C

0.15 R R R R R R R R R R R R R R R R R R

0.20 M M M M R R R R R R R R R R R R R R

0.25 M M M M M M M M M M M M R R R R R M

0.30 M M M M M M M M M M M M M M M M M M

0.35 M M M M M M M M M M M M M M M M M M

0.40 M M M M M M M M M M M M M M M M M M

0.45 M M M M M M M M M M M M M M M M M M

0.50 M M M M M M M M M M M M M M M M M M

0.55 M M M M M M M M M M M M M M M M M M

0.60 M M M M M M M M M M M M M M M M M M

0.65 M M M M M M M M M M M M M M M M M M

0.70 M M M M M M M M M M M M M M M M M M

0.75 M M M M M M M M M M M M M M M M M M

0.80 M M M M M M M M M M M M M M M M M M

a C = closed season, R = restrictive, M = moderate, L = liberal.
b Mallard and black duck breeding population sizes (in millions).
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Table 8 – Substitution rules in the Central and Mississippi Flyways for joint implementation of northern pintail
and mallard harvest strategies. The mid-continent mallard AHM strategy stipulates the maximum season length
for pintails in the Central and Mississippi Flyways. The substitutions are used when the mid-continent mallard
season length is less than liberal. For example, if the pintail strategy calls for a liberal season length with a 2-bird
daily bag limit, but the mid-continent mallard strategy calls for a restrictive season length, the recommended
pintail regulation for the Central and Mississippi Flyways would be restrictive in length with a 3-bird daily bag
limit.

Pintail Mid-continent mallard adaptive harvest management season length

Regulation Closed Restrictive Moderate Liberal

Closed Closed Closed Closed Closed

Liberal 1 Closed Restrictive 3 Moderate 3 Liberal 1

Liberal 2 Closed Restrictive 3 Moderate 3 Liberal 2

length of the general duck season determined by mallard or multi-stock AHM is less than liberal in any
of the Flyways, then an appropriate pintail daily bag limit would be substituted for that Flyway. Thus, a
shorter season length dictated by mallard or multi-stock AHM would result in an equivalent season length
for pintails, but with increased bag limit if the expected harvest remained within allowable limits.

Regulatory substitution rules have been developed for the Central and Mississippi Flyways, where the general
duck season length is driven by the mid-continent mallard AHM protocol (Table 8). These substitutions were
determined by finding a pintail daily bag limit whose expected harvest was less than or equal to that called for
under the national recommendation. Thus, if the national pintail harvest strategy called for a liberal 2-bird
bag limit, but the mid-continent mallard season length was moderate, the recommended pintail regulation
for the Central and Mississippi Flyways would be moderate in length with a 3-bird bag limit. Because
season lengths more restrictive than liberal are expected infrequently in the Atlantic and Pacific Flyways
under current eastern multi-stock and western mallard AHM strategies, substitution rules have not yet been
developed for these Flyways. If shorter season lengths were called for in the Pacific or Atlantic Flyway, then
similar rules would be specified for these Flyways and used to identify the appropriate substitution. In all
cases, a substitution produces a lower expected harvest than the harvest allowed under the pintail strategy.

The current AHM protocol for pintails considers two population models. Each model represents an alternative
hypothesis about the effect of harvest on population dynamics: one in which harvest is additive to natural
mortality, and another in which harvest is compensatory to natural mortality. The compensatory model
assumes that the mechanism for compensation is density-dependent post-harvest (winter) survival. The
models differ only in how they incorporate the winter survival rate. In the additive model, winter survival
rate is a constant, whereas winter survival is density-dependent in the compensatory model. A complete
description of the model set used to predict pintail population change can be found in Appendix L. Model
weights for the pintail model set have been updated annually since 2007 by comparing model predictions with
observed survey results. As of 2019, model weights favor the hypothesis that harvest mortality is additive
(57%). For 2020, we used the pintail model set to calculate a weighted average of 2.446 million (SE = 0.489
million) on the observed scale. We updated the latitude model with recent data (see Appendix F) to forecast
the 2020 pintail breeding distribution (latitude) which resulted in a predicted value equal to 55.16 (SE = 1.73)
degrees.

An optimal regulatory strategy for the 2021 hunting season was calculated for northern pintails using: (1) an
objective to maximize long-term cumulative harvest; (2) current regulatory alternatives and the closed-season
constraint; and (3) current population models and model weights. The resulting regulatory strategy includes
options conditional on the regulatory alternative selected the previous hunting season (Figure 12). Based on
a liberal, 1-bird daily bag limit, regulatory alternative selected for the 2020 hunting season and a predicted
2020 breeding population size of 2.446 million pintails observed at a mean latitude of 55.16 degrees, the
optimal regulatory choice for the 2021 hunting season for all four Flyways is the liberal regulatory alternative
with a 1-bird daily bag limit (Table 9).

31



Latitude

B
P

O
P

 in
 M

ill
io

ns

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

52 54 56 58

Previous: Closed

52 54 56 58

Previous: Liberal 1

52 54 56 58

Previous:  Liberal 2

Reg

 C

 

 L1

 

 L2

 

Figure 12 – Northern pintail pre-survey harvest policies derived with updated optimization methods that account
for changes in decision timing associated with adaptive harvest management protocols specified in the SEIS 2013.
This strategy is based on current regulatory alternatives, current population models and their weights, and an
objective to maximize long-term cumulative harvest.

Table 9 – Northern pintail optimal regulatory strategya for the 2021 hunting season predicated on a liberal
season and a 1-bird daily bag limit selected the previous year (2020). This strategy is based on current regulatory
alternatives, northern pintail models and weights, and the objective of maximizing long-term cumulative harvest
constrained to provide for an open hunting season when the observed breeding population is ≥1.75 million birds.
The shaded cell indicates the regulatory prescription for 2021.

Mean latitudec

BPOPb 53 53.2 53.4 53.6 53.8 54 54.2 54.4 54.6 54.8 55 55.2 55.4 55.6 55.8 56 56.2 56.4 56.6 56.8 57

≤ 1.7 C C C C C C C C C C C C C C C C C C C C C

1.8 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

1.9 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

2.1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

2.2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

2.3 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

2.4 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

2.5 L2 L2 L2 L2 L2 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1 L1

2.6 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L1

2.7 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

2.8 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

2.9 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

≥3 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2 L2

a C = closed season, L1 = liberal season with 1-bird daily bag limit, L2 = liberal season with 2-bird daily bag limit.
b Observed northern pintail breeding population size (in millions) from the WBPHS (strata 1–18, 20–50, 75–77).
c Mean latitude (in degrees) is the average latitude of the WBPHS strata weighted by population size.
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Table 10 – Regulatory alternativesa and total expected harvest levels corresponding to the closed, restrictive,
moderate, and liberal packages considered in the scaup adaptive harvest management decision framework.

Package Atlantic Mississippi Central Pacific Expected Harvestc

Closed 0.04

Restrictive 20(2)/40(1)b 45(2)/15(1)b 39(2)/35(1)b 86(2) 0.20

Moderate 60(2) 60(3) 74(3) 86(3) 0.35

Liberal 60(4) 60(4) 74(6) 107(7) 0.60

a Season length in days (daily bag limit); these alternatives assume an overall liberal adaptive harvest management
framework as determined by the status of mallards or multiple stocks in the Atlantic Flyway.

b Multiple day and daily bag limit combinations refer to hybrid seasons which allow for different daily bag limits over a
continuous season length.

c Total harvest in millions (Canada and United States combined).

9.3 Scaup

The USFWS implemented an AHM decision-making framework to inform scaup harvest regulations in 2008
(Boomer and Johnson 2007). Prior to the implementation of the SEIS 2013, the scaup AHM protocol first
derived optimal harvest levels which were then used to determine the recommended regulatory package. Each
year, an optimization was performed to identify the optimal harvest level based on updated scaup population
parameters. The harvest regulation was then determined by comparing the optimal harvest level to the
harvest thresholds corresponding to restrictive, moderate, and liberal packages (see Boomer et al. 2007). Due
to the changes in decision timing associated with the SEIS, these procedures are not possible because decision
makers would have to condition their regulatory decision on the harvest levels observed during the previous
hunting season and this information would not be available. As a result, the decision variable (harvest) in
the scaup optimization was changed from harvest levels to a set of packages with associated expected harvest
levels in the updated optimization methods. We used the thresholds identified in Boomer et al. (2007) to
specify expected harvest levels for each package (Table 10). To account for partial controllability of the scaup
harvest, we assumed that the harvest under each package could be represented with a normal distribution
with the mean set to the expected harvest level, assuming a coefficient of variation equal to 20%.

Initial scaup regulatory alternatives associated with restrictive, moderate, and liberal packages were developed
based on a simulation of an optimal policy derived under an objective to achieve 95% of the maximum,
long-term cumulative harvest (Boomer et al. 2007). This objective resulted in a strategy less sensitive to
small changes in population size compared to a strategy derived under an objective to achieve 100% of
the maximum, long-term cumulative harvest and allowed for some harvest opportunity at relatively low
population sizes. The USFWS worked with the Flyways to specify Flyway-specific regulatory alternatives
to achieve the allowable harvest thresholds corresponding to each package. At this time, the USFWS also
agreed to consider “hybrid season” options that would be available to all Flyways for the restrictive and
moderate packages. Hybrid seasons allow daily bag limits to vary for certain continuous portions of the scaup
season length. In 2008, restrictive, moderate, and liberal scaup regulatory alternatives were defined and
implemented in all four Flyways. Subsequent feedback from the Flyways led the USFWS to further clarify
criteria associated with the establishment of “hybrid seasons” and to allow additional modifications of the
alternatives for each Flyway resulting in updated regulatory alternatives that were adopted in 2009. Because
of the considerable uncertainty involved with predicting scaup harvest, the USFWS and the Flyways agreed
to keep these packages in place for at least 3 years. In 2013, the moderate packages for the Mississippi and
Central Flyways were modified to include a 3-bird daily bag limit.

The lack of scaup demographic information over a sufficient time frame and at a continental scale precludes
the use of a traditional balance equation to represent scaup population and harvest dynamics. As a result, we
used a discrete-time, stochastic, logistic-growth population model to represent changes in scaup abundance,
while explicitly accounting for scaling issues associated with the monitoring data. Details describing the
modeling and assessment framework that has been developed for scaup can be found in Appendix M and in
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Boomer and Johnson (2007).

We updated the scaup assessment based on the current model formulation and data extending from 1974
through 2019 and predicted the 2020 breeding population size equal to a median 3.53 million (SE = 0.37 ).
As in past analyses, the state-space formulation and Bayesian analysis framework provided reasonable fits
to the observed breeding population and total harvest estimates with realistic measures of variation. The
posterior mean estimate of the intrinsic rate of increase (r) is 0.13 while the posterior mean estimate of the
carrying capacity (K ) is 8.76 million birds. The posterior mean estimate of the scaling parameter (q) is 0.76,
ranging between 0.68 and 0.84 with 95% probability.

An optimal regulatory strategy for the 2021 hunting season was calculated for scaup using: (1) an objective to
achieve 95% of the maximum, long-term cumulative harvest; (2) current regulatory alternatives; and (3) the
current population model and updated parameter estimates. The resulting regulatory strategy includes op-
tions conditional on the regulatory alternative selected the previous hunting season (Table 11). We simulated
the use of this regulatory strategy to determine expected performance characteristics. Assuming that har-
vest management adhered to this strategy (and that current model parameters accurately reflect population
dynamics), breeding-population size would be expected to average 4.95 million (SD = 0.87 million). Based
on a restrictive regulatory alternative selected for the 2020 hunting season and a predicted 2020 breeding
population size of 3.53 million scaup, the optimal regulatory choice for the 2021 hunting season for all four
Flyways is the restrictive regulatory alternative (see Table 11).

10 EMERGING ISSUES IN ADAPTIVE HARVEST MANAGE-
MENT

Learning occurs passively with current AHM protocols as annual comparisons of model predictions to ob-
servations from monitoring programs are used to update model weights and relative beliefs about system
responses to management (Johnson et al. 2002) or as model parameters are updated based on an assessment
of the most recent monitoring data (Boomer and Johnson 2007, Johnson et al. 2007). However, learning can
also occur as decision-making frameworks are evaluated to determine if objectives are being achieved, have
changed, or if other aspects of the decision problem are adequately being addressed. Often the feedback re-
sulting from this process results in a form of “double-loop” learning (Lee 1993) that offers the opportunity to
adapt decision-making frameworks in response to a shifting decision context, novel or emerging management
alternatives, or a need to revise assumptions and models that may perform poorly or need to account for new
information. Adaptive management depends on this iterative process to ensure that decision-making proto-
cols remain relevant in evolving biological and social systems. Throughout the waterfowl harvest management
community, substantial progress has been made to outline the important issues that must be considered in
the revision of each AHM protocol (Johnson et al. 2015). In response to these large-scale issues, the HMWG
has been focusing efforts on the evolving needs of AHM and the role of the working group in planning for
and executing the double-loop learning phase of AHM in relation to various decision-making frameworks.

In addition, the HMWG has been discussing the technical challenges involved with dealing with large-scale
habitat and environmental change on the decision-making frameworks used to inform waterfowl harvest
management. We anticipate that large-scale system change will exacerbate most forms of uncertainty that
affect waterfowl AHM, but we believe that the elements of the current AHM framework provide the necessary
structure for coping with these changing systems (Nichols et al. 2011).

The 2019 HMWGmeeting focused on the evaluation of the Central Flyway’s proposal for a two-tier regulations
system along with revisions to northern pintail AHM (U.S. Fish and Wildlife Service 2019a). The HMWG
proposed changes to the timing of how HMWG priorities are evaluated and established, by including a mid-
summer conference call among working group members to discuss progress and current HMWG priorities.
After this year’s July conference call, the HMWG proposed an updated set of fiscal year (FY2021) priorities
for 2021 (Appendix C).
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Table 11 – Scaup optimal regulatory strategya for the 2021 hunting season. This strategy is based on the
current scaup population model and an objective to achieve 95% of the maximum, long-term cumulative harvest.
Predicated on a restrictive regulatory alternative selected the previous year (2020), the shaded cell indicates the
regulatory prescription for the 2021 hunting season.

Previous Regulation

BPOPb Closed Restrictive Moderate Liberal

≤2.7 C C C C

2.8 C C C C

2.9 R C C C

3.0 R R C C

3.1 R R R C

3.2 R R R C

3.3 R R R R

3.4 R R R R

3.5 R R R R

3.6 R R R R

3.7 R R R R

3.8 R R R R

3.9 R R R R

4.0 R R R R

4.1 M R R R

4.2 M R R R

4.3 M M R R

4.4 M M M R

4.5 M M M R

4.6 M M M M

4.7 M M M M

4.8 M M M M

4.9 M M M M

5.0 M M M M

5.1 M M M M

5.2 M M M M

5.3 M M M M

5.4 M M M M

5.5 L M M M

5.6 L M M M

5.7 L L M M

5.8 L L L M

5.9 L L L M

≥6 L L L L

a C = closed season, R = restrictive, M = moderate, L = liberal.
b Estimated scaup breeding population (in millions) observed in the WBPHS (strata 1–18, 20–50, 75–77).
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Appendix A Harvest Management Working Group Members

This list includes only permanent members of the Harvest Management Working Group. Not listed here are
numerous persons from federal and state agencies that assist the Working Group on an ad-hoc basis.

Coordinator:

Scott Boomer

U.S. Fish & Wildlife Service

11510 American Holly Drive

Laurel, Maryland 20708-4017

phone: 301-497-5684; fax: 301-497-5871

e-mail: scott boomer@fws.gov

USFWS Representatives:

Nanette Seto (Region 1) Scott Carleton (Region 2)

U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service

911 NE 11TH Avenue 500 Gold SW - 8th Floor

Portland, OR 97232-4181 Albuquerque, NM 87103

phone: 503 231-6159 phone: 505-248-6639

fax: 503 231-2019 fax: 505-248-7885

e-mail: nanette seto@fws.gov e-mail: scott carleton@fws.gov

Tom Cooper (Region 3) Bill Uihlein (Region 4)

U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service

5600 American Blvd West 1875 Century Blvd.

Bloomington, MN 55437-1458 Atlanta, GA 30345

phone: 612-713-5101 phone: 404-679-7288

fax: 612-713-5393 fax: 404 679-4180

e-mail: tom cooper@fws.gov e-mail:bill uihlein@fws.gov

Pam Toschik (Region 5) Brian Smith (Region 6)

U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service

300 Westgate Center Drive P.O. Box 25486-DFC

Hadley, MA 01035-9589 Denver, CO 80225-0486

phone: 413-253-8610 phone: 303-236-4403

fax: 413-253-8293 fax: 303-236-8680

e-mail:pamela toschik@fws.gov e-mail:brian w smith@fws.gov

Eric Taylor (Region 7) Amedee Brickey (Region 8)

U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service

1011 East Tudor Road 2800 Cottage Way, W-2606

Anchorage, AK 99503-6119 Sacramento, CA 95825

phone: 907-786-3446 phone: 916-414-6480
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U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service
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Laurel, Maryland 20708-4017 Laurel, Maryland 20708-4017

phone: phone:

fax: 301-497-5871 fax: 301-497-5871

e-mail: kathy fleming@fws.gov e-mail: pat devers@fws.gov

Atlantic Flyway Representative (Headquarters) Mississippi Flyway Representative (Headquarters)

U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service

Vacant Vacant

Jim Dubovsky (Headquarters) Todd Sanders (Headquarters)

Central Flyway Representative Pacific Flyway Representative

U.S. Fish & Wildlife Service U.S. Fish & Wildlife Service

134 Union Blvd., Suite 540 1211 SE Cardinal Court, Suite 100

Lakewood, CO 80228 Vancouver, WA 98683

phone: 303-275-2386 phone: 360-604-2562

fax: 303-275-2384 fax: 360-604-2505

e-mail: james dubovsky@fws.gov e-mail: todd sanders@fws.gov

Canadian Wildlife Service Representatives:

Christian Roy Vacant

Canadian Wildlife Service Canadian Wildlife Service

351 Saint-Joseph Blvd, Suite 150, 123 Main Street

Gatineau, Que, K1A 0H3 Winnipeg, MB R3C 4W2

phone: 819-938-5418 phone:

fax: fax:

e-mail:christian.roy3@canada.ca e-mail:

Flyway Council Representatives:

Min Huang (Atlantic Flyway) Greg Balkcom (Atlantic Flyway)

CT Dept. of Environmental Protection GA Dept. of Natural Resources

Franklin Wildlife Mgmt. Area 1014 Martin Luther King Blvd.
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fax: 860-642-7964 fax: 478-825-6421

e-mail: min.huang@po.state.ct.us e-mail:greg.balkcom@dnr.state.ga.us
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John Brunjes (Mississippi Flyway) Adam Phelps (Mississippi Flyway)
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Brandon Reishus (Pacific Flyway) Jason Schamber (Pacific Flyway)
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Appendix B 2021-2022 Regulatory Schedule

 SCHEDULE OF BIOLOGICAL INFORMATION AVAILABILITY, REGULATIONS MEETINGS AND 
FEDERAL REGISTER PUBLICATIONS FOR THE 2021–22 HUNTING SEASON

April 28, 2020 - Video-teleconference PROPOSED RULEMAKING (PRELIMINARY)
SRC Meeting WITH STATUS INFORMATION

and ISSUES

August 15 - September 30, 2020
Flyway Tech And Council Meetings

HUNTER ACTIVITY and HARVEST REPORT

February 25, 2021
FINAL SEASON FRAMEWORKS

March 2021 (at North American Conference)

June 1, 2021
ALL HUNTING SEASONS SELECTIONS

(Season Selections Due April 30)

Flyway Council Meetings

July 10, 2020

INFORMATION for CRANES  

SRC Regulatory Meeting

and WATERFOWL

SPRING POPULATION SURVEYS
March–June, 2020

August 15, 2020
WATERFOWL STATUS REPORT

WEBLESS and CRANE STATUS
INFORMATION, DOVE and WOODCOCK

SUPPLEMENTAL PROPOSALS

August 20, 2020
AHM REPORT w/OPTIMAL ALTERNATIVES,

PROPOSED SEASON FRAMEWORKS

September 1, 2021 and later
ALL HUNTING SEASONS

October 20-21, 2020 - Virtual

December 15, 2020–January 31, 2021

REGULATORY ALTERNATIVES, and

September 15, 2020

MEETING SCHEDULE FEDERAL REGISTER SCHEDULE

December 10, 2020

(30 Day Comment Period)

FALL and WINTER SURVEY

SURVEY & ASSESSMENT SCHEDULE

Figure B.1 – Schedule of biological information availability, regulation meetings, and Federal Register publica-
tions for the 2021–2022 hunting season.
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Appendix C

Proposed FY2021 Harvest Management Working Group Priorities

Table C.1 – Priority rankings and project leads identified for the technical work proposed at the 2019 Harvest
Management Working Group meeting and updated during the summer of 2020.

Priority Level Status Participants

Highest Priorities (Urgent and Important)

Evaluation of Experimental two-tier license system On-going Central Flyway, DMBM

Northern Pintail AHM revision On-going DMBM, Flyway Councils,
USGS

Reconsideration of North American Duck Harvest Management On-going DMBM, Flyway Councils

Development of an Eastern mallard harvest strategy On-going Atlantic Flyway Council,
DMBM

Re-invigorating institutional support for AHM On-going DMBM, HMWG commu-
nications team

Long-range Priorities (Non-urgent, but Very Important)

Time-dependent optimal solutions to address system change (e.g.,
habitat change; hunter dynamics; climate change).

On-going USGS, BADS

Western mallard AHM revision On-going Pacific Flyway, BADS

Additional Priorities

Waterfowl Banding Needs Assessment On-going BADS, USGS, Flyway
Councils

Waterfowl harvest potential assessment methods case study de-
velopment

On-going Atlantic Flyway Office,
DMBM

44



Forecasting Canadian Ponds:
Spring 2020

G. Scott Boomer

Branch of Assessment and Decision Support
Division of Migratory Bird Management

U.S. Fish and Wildlife Service
scott_boomer@fws.gov

20 August 2020

Abstract

Due to the COVID-19 pandemic, waterfowl habitat conditions (ponds) were not directly observed
in the spring of 2020. As a result, waterfowl harvest regulations will have to be informed
with information based on predictions of breeding population sizes and habitat conditions. We
developed an estimation and forecasting framework to predict the number of Canadian ponds in
the spring of 2020 based on information that is available to decision makers during the 2020–2021
regulations process. We summarized annual, total precipitation for prairie Canada and used
this variable as a predictor in an autoregressive integrated moving average (ARIMA) estimation
framework to develop a model to forecast the number of Canadian ponds in 2020. The top ranked
model that was best supported by the data included a 1st order moving average term [ARIMA
(0,0,1)]. Based on our selected model, the 2020 forecast of the number of Canadian ponds is 3.40
million (95% PI = 1.75 – 5.06).
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Background
Due to the COVID-19 pandemic, the United States Fish and Wildlife Service (USFWS) and its partners
were unable to participate in the Waterfowl Breeding Population and Habitat Survey (WBPHS) to
estimate the 2020 waterfowl breeding populations as well as evaluate breeding habitat conditions. As
a result, the promulgation of waterfowl harvest regulations in 2020 will require some modi�cations
to the adaptive harvest management (AHM) decision protocols that typically govern the regulatory
process. For example, observed breeding population estimates are used to determine optimal levels
of harvest. In the absence of this information, the USFWS proposes to base 2020 regulatory decisions
on predictions of breeding population sizes and habitat conditions. Current system models for
which we have AHM decision frameworks will be used to predict 2020 population sizes based on the
breeding population sizes, habitat conditions, harvest, and harvest rates observed in 2019. Under
the mid-continent mallard AHM decision framework, we use a 1st order autoregressive time series
model to predict the number of Canadian ponds as a function of the number of ponds observed the
previous year. However, this model is based on data from 1961 – 2001 and there is interest in updating
the original pond model that was developed for mid-continent mallard AHM with the available
information, including an additional predictor (total precipitation) that is available at the time decision
makers will be considering regulatory decisions. As a result, we developed an estimation framework
that will predict the number of Canadian ponds as a function of the number of ponds observed in
2019 and the total annual precipitation observed since the last WBPHS.

Data
We are interested in predicting the number of Canadian ponds for the 2020 breeding season from the
available information for ponds observed in 2019 and the total amount of recorded precipitation from
prairie weather stations from 1 June 2019 through 31 May 2020. Based on earlier work (Pospahala et al.
1974, Johnson et al. 1997), we selected weather stations from the Canadian prairies with continual
observations of daily precipitation totals from 1961–2020 (Table 1). We then summarized the number
of Canadian ponds observed in the traditional survey area of the Waterfowl Breeding Population
and Habitat Survey (U.S. Fish and Wildlife Service 2019). We then summed the total precipitation
recorded at the prairie weather stations from the 365 day period extending from 1 June to 31 May on
the year of the WBPHS (i.e., the 2019 total precipitation value would be the sum of daily precipitation
values observed from 1 June 2018 through 31 May 2019).

From 1961–2020, total precipitation in the Canadian prairies varied from a low of 271 mm in 2018
and a high of 563 mm in 1974 (Figure 1). The observed precipitation in 2020 was 394 mm.
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Table 1: Weather stations used to summarize total annual precipitation observed in prairie Canada
from 1961–2020

Province Station_Name Station_ID Start_year End_year
Alberta EDMONTON INT’L A 1865 1959 2012
Alberta EDMONTON INT’L A 50149 2012 2020
Alberta MEDICINE HAT A 2273 1883 2008
Alberta MEDICINE HAT RCS 30347 2000 2020
Manitoba BRANDON A 3471 1941 2012
Manitoba BRANDON RCS 49909 2012 2020
Manitoba WINNIPEG RICHARDSON INT’L A 3698 1938 2008
Manitoba WINNIPEG A CS 27174 1996 2020
Saskatchewan REGINA INT’L A 3002 1959 2013
Saskatchewan REGINA RCS 28011 2012 2020
Saskatchewan SASKATOON DIEFENBAKER INT’L A 3328 1883 2012
Saskatchewan SASKATOON RCS 47707 2000 2020

ponds
precipitation

1960 1980 2000 2020
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300

400
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Year

Figure 1: The number of ponds (millions) and total annual precipitation (mm) observed in prairie
Canada from 1961–2020.

We �rst examined autocorrelation plots to evaluate the information in the Canadian pond time
series (Figure 2) and used an augmented Dickey-Fuller test from the tseries R package (Trapletti and
Hornik 2019) to analyze the time series for stationarity. The results from this test suggest there is
evidence to reject the null hypothesis so we conclude that the data are stationary.
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ggtsdisplay(window(cp_ts,end=2019)[,"ponds"],ylab="Canadian ponds")
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Figure 2: Autocorrelation plots of Canadian ponds (millions) observed in prairie Canada from
1961–2019.

#ggPacf(bwt_ts)

adf.test(window(cp_ts,end=2019)[,"ponds"],alternative="stationary",k=0)

## Warning in adf.test(window(cp_ts, end = 2019)[, "ponds"], alternative =

## "stationary", : p-value smaller than printed p-value

##

## Augmented Dickey-Fuller Test

##

## data: window(cp_ts, end = 2019)[, "ponds"]

## Dickey-Fuller = -5.3609, Lag order = 0, p-value = 0.01

## alternative hypothesis: stationary

To con�rm this result, we used a KPSS test that can account for a trend.

kpss.test(window(cp_ts,end=2019)[,"ponds"],null="Trend")

## Warning in kpss.test(window(cp_ts, end = 2019)[, "ponds"], null = "Trend"): p-

## value greater than printed p-value
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##

## KPSS Test for Trend Stationarity

##

## data: window(cp_ts, end = 2019)[, "ponds"]

## KPSS Trend = 0.10376, Truncation lag parameter = 3, p-value = 0.1

For the KPSS test, the null hypothesis is that the time series is stationary. Our test results provides
little evidence to reject the null hypothesis that the pond time series is stationary, suggesting that we
will not have to consider di�erencing in our analysis.

Time Series Analysis
We are interested in predicting the number of Canadian ponds for the 2020 breeding season as a
function of the number of ponds observed in 2019 and the total amount of recorded precipitation from
prairie weather stations from 1 June 2019 through 31 May 2020. We revisited the original formulation
of the Canadian pond model developed for the mid-continent mallard AHM program (Johnson et al.
1997). The predictive equation used to project the number of Canadian ponds (P) included

%C = V0 + U%C−1 + V1%A428?C + nC
where, V0 is the intercept, U is the autoregressive term, V1 is the slope term for the precipitation
covariate and error term n is the assumed to be white noise.

We analyzed the updated information with an autoregressive integrated moving average (ARIMA)
estimation framework, using the R function auto.arima from the forecast R package (Hyndman et al.
2020, Hyndman and Khandakar 2008) to determine the appropriate number of lags and levels of
di�erencing (Hyndman and Athanasopoulos 2018) for the �nal speci�cation of our ARIMA regression
model.

fit<-auto.arima(window(cp_ts,end=2019)[,"ponds"],
xreg=window(cp_ts,end=2019)[,"precipitation"],
stepwise=FALSE,

approximation=FALSE,

seasonal=FALSE,

trace=TRUE)

##

## ARIMA(0,0,0) with zero mean : 161.5068

## ARIMA(0,0,0) with non-zero mean : 163.3993

## ARIMA(0,0,1) with zero mean : 152.119

## ARIMA(0,0,1) with non-zero mean : 153.6019

## ARIMA(0,0,2) with zero mean : 153.751

## ARIMA(0,0,2) with non-zero mean : 155.6254

## ARIMA(0,0,3) with zero mean : 155.8635

## ARIMA(0,0,3) with non-zero mean : 157.9997

## ARIMA(0,0,4) with zero mean : 157.1322

## ARIMA(0,0,4) with non-zero mean : 159.6507

## ARIMA(0,0,5) with zero mean : 159.1683

## ARIMA(0,0,5) with non-zero mean : 161.6738

## ARIMA(1,0,0) with zero mean : 152.4232

## ARIMA(1,0,0) with non-zero mean : 154.4094
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## ARIMA(1,0,1) with zero mean : 153.8641

## ARIMA(1,0,1) with non-zero mean : 155.6688

## ARIMA(1,0,2) with zero mean : 155.8828

## ARIMA(1,0,2) with non-zero mean : 157.6111

## ARIMA(1,0,3) with zero mean : 158.0459

## ARIMA(1,0,3) with non-zero mean : 160.3997

## ARIMA(1,0,4) with zero mean : 159.407

## ARIMA(1,0,4) with non-zero mean : 161.965

## ARIMA(2,0,0) with zero mean : 154.0319

## ARIMA(2,0,0) with non-zero mean : 155.9521

## ARIMA(2,0,1) with zero mean : 156.247

## ARIMA(2,0,1) with non-zero mean : 158.1479

## ARIMA(2,0,2) with zero mean : 158.3529

## ARIMA(2,0,2) with non-zero mean : 160.1859

## ARIMA(2,0,3) with zero mean : 160.304

## ARIMA(2,0,3) with non-zero mean : Inf

## ARIMA(3,0,0) with zero mean : 155.6994

## ARIMA(3,0,0) with non-zero mean : 157.4428

## ARIMA(3,0,1) with zero mean : 157.6636

## ARIMA(3,0,1) with non-zero mean : 159.3361

## ARIMA(3,0,2) with zero mean : 158.8419

## ARIMA(3,0,2) with non-zero mean : Inf

## ARIMA(4,0,0) with zero mean : 156.8177

## ARIMA(4,0,0) with non-zero mean : 158.8691

## ARIMA(4,0,1) with zero mean : 159.152

## ARIMA(4,0,1) with non-zero mean : 161.5277

## ARIMA(5,0,0) with zero mean : 159.0008

## ARIMA(5,0,0) with non-zero mean : 161.4971

##

##

##

## Best model: Regression with ARIMA(0,0,1) errors

print(fit)

## Series: window(cp_ts, end = 2019)[, "ponds"]

## Regression with ARIMA(0,0,1) errors

##

## Coefficients:

## ma1 xreg

## 0.4205 0.0087

## s.e. 0.1038 0.0004

##

## sigma^2 estimated as 0.7136: log likelihood=-72.84

## AIC=151.68 AICc=152.12 BIC=157.92

The results from the testing in the auto.arima function suggest that the ARIMA estimation does
not require di�erencing or the consideration of lags in predictors (i.e., autoregressive terms). In
contrast to the previous autoregressive model developed for mid-continent mallard AHM, we can
now use a 1st order moving average model [ARIMA (0,0,1)] to forecast changes in the number of
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Canadian ponds as function of observed total precipitation. The residuals from the selected model
suggest that the ARIMA errors do not deviate from white noise (Figure 3) and (Figure 4).
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Figure 3: Regression and ARIMA residuals from the selected model [ARIMA(0,0,1)].
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Figure 4: Residual diagnostics from the selected model [ARIMA(0,0,1)].

##

## Ljung-Box test

##

## data: Residuals from Regression with ARIMA(0,0,1) errors

## Q* = 4.5471, df = 8, p-value = 0.8047

##

## Model df: 2. Total lags used: 10

2020 Forecast
The selected regression model predicts ponds in the next time step as a function of the observed
precipitation and residuals from previous predictions based on a 1st order moving average model
[ARIMA (0,0,1)] (Hyndman and Athanasopoulos 2018). We can use this model to forecast the number
of Canadian ponds with the available precipitation information for 2020 (1 June 2019–May 2020)
which is currently 394 millimeters of precipitation.

cp_2020 <- forecast(fit, xreg=window(cp_ts,start=2020)[,"precipitation"],h=1)
summary(cp_2020)

##

## Forecast method: Regression with ARIMA(0,0,1) errors

##

## Model Information:
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## Series: window(cp_ts, end = 2019)[, "ponds"]

## Regression with ARIMA(0,0,1) errors

##

## Coefficients:

## ma1 xreg

## 0.4205 0.0087

## s.e. 0.1038 0.0004

##

## sigma^2 estimated as 0.7136: log likelihood=-72.84

## AIC=151.68 AICc=152.12 BIC=157.92

##

## Error measures:

## ME RMSE MAE MPE MAPE MASE

## Training set -0.01886045 0.8302826 0.6745656 -8.634856 22.91599 0.6661257

## ACF1

## Training set 0.05283315

##

## Forecasts:

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

## 2020 3.402836 2.32028 4.485393 1.747209 5.058464

autoplot(cp_2020) + xlab("Year") + ylab("Canadian Ponds") +ggtitle("")
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Figure 5: The 2020 forecast of Canadian ponds from an ARIMA(0,0,1) regression model.
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mean_abs <- format(round(as.numeric(cp_2020$mean),2),nsmall=2)
upper_abs<-round(cp_2020$upper[2],2)
lower_abs<-round(cp_2020$lower[2],2)
#print(mean_abs)

Based on these numbers, the forecast for the number of Canadian ponds in the spring of 2020 is
3.40 million with a 95% prediction interval ranging from 1.75 to 5.06 million (Figure 5).
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Abstract

Due to the COVID-19 pandemic, waterfowl breeding populations were not directly observed in
the spring of 2020. As a result, waterfowl harvest regulations will have to be informed with in-
formation based on predictions of breeding population sizes and habitat conditions. We developed
an estimation and forecasting framework to predict the 2020 Great Lakes region (Minnesota,
Michigan, and Wisconsin combined) mallard (Anas platyrhnchous) breeding population based on
historical breeding population estimates from 1991–2019. We used an autoregressive integrated
moving average (ARIMA) estimation framework to develop a model to forecast the abundance of
Great Lakes region mallards in 2020. The top ranked model that was best supported by the data
included a 1st order autoregressive term with 1st order di�erencing of the data [ARIMA (1,1,0)].
Based on our selected model, the 2020 forecast of the number of Great Lakes mallards is 0.73
million (95% PI = 0.50 – 0.96).
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Background
Due to the COVID-19 pandemic, the United States Fish and Wildlife Service (USFWS) and its partners
were unable to participate in the Waterfowl Breeding Population and Habitat Survey (WBPHS) to
estimate the 2020 waterfowl breeding populations as well as evaluate breeding habitat conditions. As
a result, the promulgation of waterfowl harvest regulations in 2020 will require some modi�cations to
the decision protocols that typically govern the regulatory process. For example, observed breeding
population estimates are used to determine waterfowl harvest regulations. In the absence of this
information, the USFWS proposes to base 2020 regulatory decisions on predictions of breeding
population sizes and habitat conditions. Current system models for which we have AHM decision
frameworks will be used to predict 2020 population sizes based on the breeding population sizes,
habitat conditions, harvest, and harvest rates observed in 2019. However, several populations of
interest do not have predictive modeling frameworks that can be used to develop population estimates
for the 2020 breeding population. As a result, we developed an estimation framework to predict the
2020 breeding population of Great Lakes (GL) region mallards as a function of historical data.

Data
We summarized historical breeding population information for GL mallards from 1991–2019 and
used this information as the basis of our time series analysis.

getwd()

## [1] "C:/workspace/2020/MCMallard20/lake_states/code"

mall_dat <- read.csv(
"C:/workspace/2020/MCMallard20/lake_states/data/lakestatesmallardbpop.csv",

header=TRUE)

# bind data into a time series object for convenience

mall_ts<-ts(mall_dat[,5],frequency=1,start=1991,end=2019)

We are interested in predicting the 2020 GL mallard population from the historical time series
of breeding population estimates from 1991–2019. The population appears to undergo a shift in
dynamics from relatively high population levels throughout the 1990’s to a consistent declining trend
since 2000 (Figure 1).
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Figure 1: Great Lakes region mallard population estimates (millions) from 1991–2019.

We �rst examined autocorrelation plots to evaluate the information in the GL mallard time series
(Figure 2). We then tested for non-stationary patterns in the data with an augmented Dicky-Fuller
test from the tseries R package (Trapletti and Hornik 2019).
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Figure 2: Autocorrelation plots of Great Lakes region mallard population estimates.

## Warning in adf.test(mall_ts, alternative = "stationary", k = 0): p-value smaller

## than printed p-value

##

## Augmented Dickey-Fuller Test
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##

## data: mall_ts

## Dickey-Fuller = -5.3795, Lag order = 0, p-value = 0.01

## alternative hypothesis: stationary

The results from this test suggest there is evidence to reject the null hypothesis so we conclude
that the data are stationary, but because there is a suggestion of a trend, we can further test for
stationarity around the trend with a KPSS test. The null hypothesis for the KPSS test is that the
time series is stationary around a trend. Our test results provides little evidence to reject the null
hypothesis that the GL mallard time series is stationary, suggesting that we will not have to consider
di�erencing in our analysis. However, when performing the KPSS test assuming no trend, we do �nd
some evidence to reject the null hypothesis that the data are not level stationary (assuming no trend).

kpss.test(mall_ts,null="Trend")

## Warning in kpss.test(mall_ts, null = "Trend"): p-value greater than printed p-

## value

##

## KPSS Test for Trend Stationarity

##

## data: mall_ts

## KPSS Trend = 0.10891, Truncation lag parameter = 2, p-value = 0.1

kpss.test(mall_ts,null="Level")

##

## KPSS Test for Level Stationarity

##

## data: mall_ts

## KPSS Level = 0.73533, Truncation lag parameter = 2, p-value = 0.01033

Time Series Analysis
We are interested in forecasting the change in GL mallard population from 2019 to 2020. We analysed
the GL mallard information with an autoregressive integrated moving average (ARIMA) estimation
framework, using the R function auto.arima from the Forecast R package (Hyndman et al. 2020,
Hyndman and Khandakar 2008) to determine the appropriate number of lags and levels of di�erencing
(Hyndman and Athanasopoulos 2018) for the �nal speci�cation of our ARIMA model. All of the top
models from the auto.arima procedure suggest that a 1st order di�erencing should be used when
�tting this time series information. Model selection results suggest that a 1st order autoregressive
model with a 1st order di�erence is best supported by the data.

fit<-auto.arima(mall_ts,
seasonal=FALSE,

approximation=FALSE,

trace=TRUE)
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##

## ARIMA(2,1,2) with drift : -33.23978

## ARIMA(0,1,0) with drift : -23.16837

## ARIMA(1,1,0) with drift : -33.86648

## ARIMA(0,1,1) with drift : -29.62652

## ARIMA(0,1,0) : -25.49406

## ARIMA(2,1,0) with drift : -31.13157

## ARIMA(1,1,1) with drift : -31.12988

## ARIMA(2,1,1) with drift : -28.17964

## ARIMA(1,1,0) : -36.30742

## ARIMA(2,1,0) : -33.7882

## ARIMA(1,1,1) : -33.78788

## ARIMA(0,1,1) : -31.89385

## ARIMA(2,1,1) : -31.12815

##

## Best model: ARIMA(1,1,0)

print(fit)

## Series: mall_ts

## ARIMA(1,1,0)

##

## Coefficients:

## ar1

## -0.6538

## s.e. 0.1542

##

## sigma^2 estimated as 0.01387: log likelihood=20.39

## AIC=-36.79 AICc=-36.31 BIC=-34.12

Diagnostics of the selected model provide strong evidence that the residuals are well behaved
(low autocorrelation) and little evidence to suggest that they are not consistent with white noise.
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Figure 3: Residual diagnostics from the selected model [ARIMA (1,1,0)].

##

## Ljung-Box test

##

## data: Residuals from ARIMA(1,1,0)

## Q* = 6.7928, df = 5, p-value = 0.2365

##

## Model df: 1. Total lags used: 6

2020 Forecast
The selected model is equivalent to a 1st order autoregressive model of the di�erenced (1 year) data
(Hyndman and Athanasopoulos 2018). Under this speci�cation, we can use this parameterization to
forecast the Great Lakes mallard population for 2020.

mall_2020 <- forecast(fit,h=1)
autoplot(mall_2020) + xlab("Year") +

ylab("Great Lakes mallard population (millions)") +
ggtitle("")
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Figure 4: The forecast of the Great Lakes mallard population for 2020.

summary(mall_2020)

##

## Forecast method: ARIMA(1,1,0)

##

## Model Information:

## Series: mall_ts

## ARIMA(1,1,0)

##

## Coefficients:

## ar1

## -0.6538

## s.e. 0.1542

##

## sigma^2 estimated as 0.01387: log likelihood=20.39

## AIC=-36.79 AICc=-36.31 BIC=-34.12

##

## Error measures:

## ME RMSE MAE MPE MAPE MASE

## Training set -0.001426459 0.1136323 0.08634756 -1.452362 10.51424 0.7330502

## ACF1

## Training set 0.08860074

##
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## Forecasts:

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

## 2020 0.7309913 0.5800685 0.8819141 0.5001748 0.9618078

mall_2020_sd<-(mall_2020$upper[,1] - mall_2020$lower[,1]) /
(2 * qnorm(.5 + mall_2020$level[1] / 200))

print(paste("SD = ",round(mall_2020_sd,3),sep=""))

## [1] "SD = 0.118"

mean_abs <- format(round(as.numeric(mall_2020$mean),2),nsmall=2)
upper_abs<- format(round(mall_2020$upper[2],2),nsmall=2)
lower_abs<- format(round(mall_2020$lower[2],2),nsmall=2)

Based on these results, the forecast for the GL mallard population in the spring of 2020 is a mean
estimate of 0.73 with a 95% prediction interval ranging from 0.50 to 0.96 (Figure 4).
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Abstract

The American black duck (ABDU) Adaptive Harvest Management framework uses ABDU population
size and eastern mallard (EMALL) population size as state variables. EMALL were hypothesized to
compete with breeding ABDU and reduce recruitment. Due to the Covid-19 epidemic, spring breeding
population surveys for waterfowl were not conducted during the spring of 2020. We do not have a
population model that can be used to predict EMALL breeding population size in 2020, so we used a
formal time series analysis to predict the 2020 breeding population size for EMALL to inform ABDU
AHM. Our time series analysis indicated that a single difference and first-order moving average model fit
the time series best. The predicted breeding population size for 2020 from this model was 387,269 (95%
PI = 331,265 - 443,273).

Contents

1 Introduction

2 Raw Data

3 Analysis

3.1 Results Summary and 2020 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 Assess Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

American black duck (ABDU) AHM is currently informed by two states: ABDU breeeding population size
(BPOP) and eastern mallard (EMALL) BPOP in eastern Canada. Although the management community
is moving towards defining the ABDU population as all black ducks breeding in eastern Canada and the
eastern U.S., the current definition is ABDU breeding in the core breeding range of eastern Canada (WBPHS
strata 51, 52, 63, 64, 66, 67, 68, 70, 71, and 72). The EMALL population used in ABDU AHM is comprised
of those breeding in the same strata as the current ABDU population definition. All WBPHS were cancelled
for the spring 2020 due to the Covid-19 epidemic, so we do not have an estimate of the current state for
either ABDU and EMALL. We used the ABDU integrated population model with last year’s population size,
2019 pre-season banding data, and predicted 2019 recruitment based on the 2019 ABDU BPOP (density-
dependent term), 2019 EMALL BPOP (competition hypothesis), and a long-term trend. However, we do
not have a current population model to predict the EMALL population size for 2020. The population model
used to support the former eastern mallard AHM strategy was based on a different population of mallards
(i.e., those breeding in WBPHS strata 51, 52, 53, and 56; and in the states of VA north to NH), so we
could not use that model to predict EMALL BPOP for ABDU AHM. Therefore, we used an Auto Regressive
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Integrated Moving Average (ARIMA) approach to predict a 2020 BPOP for EMALL based on the historic
time series.

We used the ‘forecast’ package with the ARIMA function in program R as recommended by Hyndman and
Athanasopoulos (2018) to identify the best approach for forecasting the 2020 EMALL population:

1. Inspect the raw data for stationarity - a stationary population is one with random fluctuations where
a count is not influenced by the time at which its observed (i.e., no trends or seasonality).

2. Use model selection (AICc) and a stepwise selection to identify the best autoregressive, differencing,
or moving average (and order for each) is best for forecasting the time series based on the nature of
the historic data.

3. Present fit tests to assess how well the selected model fits.

2 Raw Data

We explored the raw data for stationarity using:

1. Plot pf the raw data through time and simple regression of year and time to see if there is evidence of
a trend

2. Produced an Autocorrelation plot of the coefficients of correlation between a time series and lags of
that time series. Stationary data have autocorrelation go to zero rapidly within very few time lags.

3. Conducted a Box-Ljung test, which assess the overall randomness of the data rather than autocorre-
lation at specific time lags. The null hypothesis for this test is that the data represent randomness or
white noise

4. Conducted a KPSS unit root test to assess whether differencing (i.e., use the difference between sub-
sequent observations in the analysis) is likely needed to achieve stationarity. The null hypothesis is
that the data are random, so rejecting the null suggests that differencing is needed. As implemented
in ARIMA, the test statistic is compared to the critical values at different levels in the output.

raw.dat <- read.csv(paste(root,’integrated.csv’,sep=’’))
mall <- raw.dat[,c(’Year’,’mall_med’,’mall_se’,’mall_LCI95’,’mall_UCI95’)]
# Assess stationarity

# Visualize data and run simple regression to look for trends and extreme observations
plot(mall$Year,mall$mall_med/100,type=’l’,lwd=3,xlab = ’Year’,ylab = ’EMALL BPOP (in 100,000s)’,ylim=c(0,8))

lines(mall$Year,mall$mall_LCI95/100000,lty=3,lwd=3)
lines(mall$Year,mall$mall_UCI95/100000,lty=3,lwd=3)
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glm.trend <- glm(mall_med ~ Year, data = mall)
summary(glm.trend)

##
## Call:
## glm(formula = mall_med ~ Year, data = mall)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -58.017 -14.518 1.383 14.159 62.640
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5180.5994 1164.2915 -4.450 0.000125 ***
## Year 2.7752 0.5808 4.778 0.0000509 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for gaussian family taken to be 758.2334)
##
## Null deviance: 38540 on 29 degrees of freedom
## Residual deviance: 21231 on 28 degrees of freedom
## AIC: 288
##
## Number of Fisher Scoring iterations: 2
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# Autocorrelation plot
acf(mall$mall_med, main="")
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# Box-Ljung test
Box.test(mall$mall_med, lag=10, type="Ljung-Box")

##
## Box-Ljung test
##
## data: mall$mall_med
## X-squared = 36.479, df = 10, p-value = 0.00006963

# KPSS Unit Root Test
mall$mall_med %>%

ur.kpss() %>%
summary()

##
## #######################
## # KPSS Unit Root Test #
## #######################
##
## Test is of type: mu with 2 lags.
##
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## Value of test-statistic is: 0.7761
##
## Critical value for a significance level of:
## 10pct 5pct 2.5pct 1pct
## critical values 0.347 0.463 0.574 0.739

Inspection of the raw data indicated that the EMALL time series is not stationary, and that differencing is
likely needed and a basic autocorrelation or random walk model might not be appropriate. The 4 checks
indicated:

1. The raw data plot indicated an increasing trend over time and the simple linear regression indicated a
significant positive slope

2. The autocorrelation did not approach zero until several lags; and even went slightly negative towards
the longest lags

3. The Box-Ljung test had a small p-value, which rejects the null hypothesis of randomness in the data
4. The unit root test test-statistic was slightly greater than the significance level at 1 percent (i.e., out in

the tail), so it rejects the hypothesis of overall stationarity in the data.

3 Analysis

We used the auto.arima function to estimate the best approach and ordering for forecasting EMALL BPOP
based on the historic time series. The auto.arima function returns a vector with three elements to summarize
the results of model selection (i.e., ARIMA(x,y,z)):

1. Element x represents autoregressive models (0 = autoregressive model not appropriate, >0 = order for
autoregressive model AR(1), AR(2), etc)

2. Element y represents differencing (0 = differencing not needed, >0 = order for differencing)
3. Element z represents whether a moving average model is appropriate (0 = moving average model not

needed, >0 = order for moving average model)

3.1 Results Summary and 2020 Prediction

Model selection indicated ARIMA(0,1,1) indicating that differencing of 1 time step and MA(1) fit the data
best. The regression was conducted on differences among years (N=29) rather than the actual annual
estimates (N=30) and the values were the current and single time lag regression errors rather than the
population sizes. The resulting regression equation is: yt = εt − 0.6110εt−1. The εt terms in this model
are not directly observed, so this is not a standard regression and the values in the model are estimated
from recursive estimation. The population sizes are considered weighted moving averages of the past year’s
forecast error. This model was selected at best due to the inherent trend in the time series.

## Series: dat
## ARIMA(0,1,1)
##
## Coefficients:
## ma1
## -0.6110
## s.e. 0.1402
##
## sigma^2 estimated as 816.5: log likelihood=-138.1
## AIC=280.19 AICc=280.65 BIC=282.93
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Table 1: Predicted BPOP for EMALL (and prediction intervals) for 2020

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2020 387.2688 350.6497 423.8879 331.2647 443.2729
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3.2 Assess Model Fit

Inspection of model fit indicated that ARIMA(0,1,1) model adequately fit the time series. The Ljung-Box test
had a p-value of 0.328, so we do not reject the null hypothesis of random variation and the autocorrelation
plot centered around zero within acceptable limits (dotted blue lines in the ACF plot below). Although
overall, the model appeared to fit well, the residual plots indicated some lack of fit. The time series of
residual plot indicated a slight declining trend and the residual histogram was slightly left-skewed. The
mean of the residuals should ideally be zero (equally under and over fit), but the mean of the residuals was
about 6. This pattern indicated that early in the time series the model slightly over-predicted, whereas later
in the time series, the model slightly under-predicted. This is likely due to the trend in the raw data where
the population was increasing until a certain point where it appears to stabilize or slightly decrease.
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##
## Ljung-Box test
##
## data: Residuals from ARIMA(0,1,1)
## Q* = 5.7823, df = 5, p-value = 0.328
##
## Model df: 1. Total lags used: 6
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Abstract

Due to the COVID-19 pandemic, waterfowl breeding populations were not directly observed
in the spring of 2020. As a result, waterfowl harvest regulations will have to be informed
with information based on predictions of breeding population sizes and habitat conditions. We
developed an estimation and forecasting framework to predict the distribution (weighted latitude)
of the pintail (Anas acuta) breeding population in the spring of 2020 based on historical breeding
distribution information from 1980–2019. We used an autoregressive integrated moving average
(ARIMA) estimation framework to develop a model to forecast the breeding distribution of pintails
in 2020. A 1st order autoregressive model [ARIMA (1,0,0)] was best supported by the data. Based
on our selected model, the forecast of the latitude of the 2020 pintail breeding population is 55.16
degrees (95% PI = 51.78 – 58.55).
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Background
Due to the COVID-19 pandemic, the United States Fish and Wildlife Service (USFWS) and its partners
were unable to conduct the Waterfowl Breeding Population and Habitat Survey (WBPHS) to estimate
the 2020 waterfowl breeding populations as well as evaluate breeding habitat conditions. As a result,
the promulgation of waterfowl harvest regulations in 2020 will require some modi�cations to the
decision protocols that typically govern the regulatory process. In the absence of this information,
the USFWS proposes to base 2020 regulatory decisions on predictions of breeding population sizes
and habitat conditions. Current system models for which we have AHM decision frameworks will
be used to predict 2020 population sizes based on the breeding population sizes, habitat conditions,
harvest, and harvest rates observed in 2019. However, several harvest strategies such as pintail AHM
rely on other forms of information (e.g., breeding distribution) to establish decision thresholds. As a
result, we developed an estimation framework to forecast the latitude of the 2020 pintail breeding
population distribution.

Latitude Time Series Analysis

Data

nopi_dat<-getBPOP.fn(1430,"MAS",1980:2019,1e6)
# bind data into a time series object for convenience

lat_ts<-ts(nopi_dat$lat,frequency=1,start=1980,end=2019)

We are interested in predicting the 2020 pintail breeding distribution (weighted latitude) from the
historical time series of breeding population estimates. We summarized breeding ground distribution
information in the form of a BPOP weighted average of the latitude of the centroid of each strata in
the traditional survey area of the Waterfowl Breeding Population and Habitat Survey (U.S. Fish and
Wildlife Service 2019). Based on previous analyses that documented a temporal shift in the distribution
of breeding pintails (Runge and Boomer 2005, M. C. Runge USGS, personal communication), we
restricted our analyses to information from 1980–2019 (Figure 1).
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Figure 1: The observed latitude of the pintail breeding population distribution from 1980–2019.

We analysed the raw time series information for stationarity with unit root tests from the R
tseries package (Trapletti and Hornik 2019). We started with an augmented Dicky-Fuller test limiting
the number of lags to an AR(1) process to test the null hypothesis that the population time series is
non-stationary. These test results provide strong evidence that the data are stationary.

#ggAcf(lat_ts)

adf.test(lat_ts, k = 0)

##

## Augmented Dickey-Fuller Test

##

## data: lat_ts

## Dickey-Fuller = -4.0426, Lag order = 0, p-value = 0.01812

## alternative hypothesis: stationary

To con�rm this result, we used a KPSS test with a null hypothesis that the time series is stationary.
These test results provide little evidence to conclude that the data are not stationary.

kpss.test(lat_ts,null="Level")

## Warning in kpss.test(lat_ts, null = "Level"): p-value greater than printed p-

## value

##

## KPSS Test for Level Stationarity

##

## data: lat_ts

## KPSS Level = 0.1211, Truncation lag parameter = 3, p-value = 0.1
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We analysed the historical information with an autoregressive integrated moving average (ARIMA)
estimation framework, using the auto.arima function from the Forecast R package (Hyndman et al.
2020, Hyndman and Khandakar 2008) to determine the appropriate number of lags and di�erencing
(Hyndman and Athanasopoulos 2018) for the �nal speci�cation of our ARIMA model.

fit_lat<-auto.arima(lat_ts,stepwise=FALSE,approximation=FALSE,trace=TRUE)

##

## ARIMA(0,0,0) with zero mean : 437.1984

## ARIMA(0,0,0) with non-zero mean : 165.9492

## ARIMA(0,0,1) with zero mean : Inf

## ARIMA(0,0,1) with non-zero mean : 163.692

## ARIMA(0,0,2) with zero mean : Inf

## ARIMA(0,0,2) with non-zero mean : 163.2817

## ARIMA(0,0,3) with zero mean : Inf

## ARIMA(0,0,3) with non-zero mean : 165.7076

## ARIMA(0,0,4) with zero mean : Inf

## ARIMA(0,0,4) with non-zero mean : 165.9126

## ARIMA(0,0,5) with zero mean : Inf

## ARIMA(0,0,5) with non-zero mean : 168.7623

## ARIMA(1,0,0) with zero mean : Inf

## ARIMA(1,0,0) with non-zero mean : 161.9086

## ARIMA(1,0,1) with zero mean : Inf

## ARIMA(1,0,1) with non-zero mean : 164.2008

## ARIMA(1,0,2) with zero mean : Inf

## ARIMA(1,0,2) with non-zero mean : 165.6069

## ARIMA(1,0,3) with zero mean : Inf

## ARIMA(1,0,3) with non-zero mean : 169.0239

## ARIMA(1,0,4) with zero mean : Inf

## ARIMA(1,0,4) with non-zero mean : 168.8571

## ARIMA(2,0,0) with zero mean : Inf

## ARIMA(2,0,0) with non-zero mean : 164.0091

## ARIMA(2,0,1) with zero mean : Inf

## ARIMA(2,0,1) with non-zero mean : 165.1546

## ARIMA(2,0,2) with zero mean : Inf

## ARIMA(2,0,2) with non-zero mean : 167.9224

## ARIMA(2,0,3) with zero mean : Inf

## ARIMA(2,0,3) with non-zero mean : Inf

## ARIMA(3,0,0) with zero mean : Inf

## ARIMA(3,0,0) with non-zero mean : 165.1493

## ARIMA(3,0,1) with zero mean : Inf

## ARIMA(3,0,1) with non-zero mean : 165.0755

## ARIMA(3,0,2) with zero mean : Inf

## ARIMA(3,0,2) with non-zero mean : Inf

## ARIMA(4,0,0) with zero mean : Inf

## ARIMA(4,0,0) with non-zero mean : 167.4134

## ARIMA(4,0,1) with zero mean : Inf

## ARIMA(4,0,1) with non-zero mean : 167.8004

## ARIMA(5,0,0) with zero mean : Inf

## ARIMA(5,0,0) with non-zero mean : 166.1395
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##

##

##

## Best model: ARIMA(1,0,0) with non-zero mean

summary(fit_lat)

## Series: lat_ts

## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## ar1 mean

## 0.3836 55.6559

## s.e. 0.1450 0.4248

##

## sigma^2 estimated as 2.976: log likelihood=-77.62

## AIC=161.24 AICc=161.91 BIC=166.31

##

## Training set error measures:

## ME RMSE MAE MPE MAPE MASE

## Training set -0.01472947 1.681347 1.312912 -0.1177028 2.357408 0.7654633

## ACF1

## Training set -0.03108714

print(fit_lat)

## Series: lat_ts

## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## ar1 mean

## 0.3836 55.6559

## s.e. 0.1450 0.4248

##

## sigma^2 estimated as 2.976: log likelihood=-77.62

## AIC=161.24 AICc=161.91 BIC=166.31

#checkresiduals(fit_lat)

77



−2

0

2

1980 1990 2000 2010 2020

Residuals from ARIMA(1,0,0) with non−zero mean

−0.2

0.0

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13
Lag

A
C

F

0

5

10

−6 −3 0 3 6
residuals

co
un

t

Figure 2: Residual diagnostics from the selected model [ARIMA (1,0,0)].

##

## Ljung-Box test

##

## data: Residuals from ARIMA(1,0,0) with non-zero mean

## Q* = 10.665, df = 6, p-value = 0.09931

##

## Model df: 2. Total lags used: 8

2020 Pintail Latitude Forecast
The model selection results suggest that a 1st order autoregressive model [ARIMA (1,0,0)] is best
supported by the data. Model diagnostics indicate that the residuals are uncorrelated and the selected
model does not show a lack of �t (Figure 2). We can use these model results to forecast the distribution
of the pintail breeding population in 2020.

lat_2020 <- forecast(fit_lat,h=1)
summary(lat_2020)

##

## Forecast method: ARIMA(1,0,0) with non-zero mean

##

## Model Information:

## Series: lat_ts
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## ARIMA(1,0,0) with non-zero mean

##

## Coefficients:

## ar1 mean

## 0.3836 55.6559

## s.e. 0.1450 0.4248

##

## sigma^2 estimated as 2.976: log likelihood=-77.62

## AIC=161.24 AICc=161.91 BIC=166.31

##

## Error measures:

## ME RMSE MAE MPE MAPE MASE

## Training set -0.01472947 1.681347 1.312912 -0.1177028 2.357408 0.7654633

## ACF1

## Training set -0.03108714

##

## Forecasts:

## Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

## 2020 55.16463 52.95392 57.37534 51.78364 58.54562

autoplot(lat_2020) + xlab("Year") + ylab("Latitude (degrees)") +ggtitle("")
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Figure 3: The 2020 forecast of the latitude of the pintail breeding population distribution.
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lat_2020_sd<-(lat_2020$upper[,1] - lat_2020$lower[,1]) /
(2 * qnorm(.5 + lat_2020$level[1] / 200))

mean_abs <- format(round(as.numeric(lat_2020$mean),2),nsmall=2)
upper_abs<-format(round(lat_2020$upper[2],2),nsmall=2)
lower_abs<-format(round(lat_2020$lower[2],2),nsmall=2)
print(paste("SD =",round(lat_2020_sd,3),sep=""))

## [1] "SD =1.725"

Based on the selected model, the forecast for the latitude of the 2020 pintail breeding population
is 55.16 degrees with a 95% prediction interval ranging from 51.78 to 58.55 (Figure 3).
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Appendix H Mid-Continent Mallard Models

In 1995, we developed population models to predict changes in mid-continent mallards based on the traditional
survey area which includes individuals from Alaska (Johnson et al. 1997). In 1997, we added mallards from
the Great Lakes region (Michigan, Minnesota, and Wisconsin) to the mid-continent mallard stock, assuming
their population dynamics were equivalent. In 2002, we made extensive revisions to the set of alternative
models describing the population dynamics of mid-continent mallards (Runge et al. 2002, U.S. Fish and
Wildlife Service 2002). In 2008, we redefined the population of mid-continent mallards Table H.1 to account
for the removal of Alaskan birds (WBPHS strata 1–12) that are now considered to be in the western mallard
stock and have subsequently rescaled the model set accordingly.

Table H.1 – Estimates (N) and associated standard errors (SE) of mid-continent mallards (in millions) observed
in the WBPHS (strata 13–18, 20–50, and 75–77) and the Great Lakes region (Michigan, Minnesota, and Wis-
consin) from 1992 to 2019. The waterfowl breeding population surveys were not conducted in 2020 due to the
COVID-19 pandemic; 2020 numbers are based on model predictions.

WBPHS area Great Lakes region Total

Year N SE N SE N SE

1992 5.6304 0.2379 0.9964 0.1178 6.6267 0.2654

1993 5.4253 0.2068 0.9176 0.0827 6.3429 0.2227

1994 6.6292 0.2803 1.1304 0.1153 7.7596 0.3031

1995 7.7452 0.2793 1.0857 0.1323 8.8309 0.3090

1996 7.4193 0.2593 1.0074 0.0991 8.4267 0.2776

1997 9.3554 0.3041 1.0777 0.1140 10.4332 0.3248

1998 8.8041 0.2940 1.0783 0.1172 9.8825 0.3165

1999 10.0926 0.3374 1.0309 0.1282 11.1236 0.3610

2000 8.6999 0.2855 1.1993 0.1221 9.8992 0.3105

2001 7.1857 0.2204 0.8282 0.0718 8.0139 0.2318

2002 6.8364 0.2412 1.0684 0.0883 7.9047 0.2569

2003 7.1062 0.2589 0.8407 0.0647 7.9470 0.2668

2004 6.6142 0.2746 0.9465 0.0915 7.5607 0.2895

2005 6.0521 0.2754 0.8138 0.0677 6.8660 0.2836

2006 6.7607 0.2187 0.6249 0.0577 7.3856 0.2262

2007 7.7258 0.2805 0.7904 0.0752 8.5162 0.2904

2008 7.1914 0.2525 0.6865 0.0550 7.8779 0.2584

2009 8.0094 0.2442 0.6958 0.0625 8.7052 0.2521

2010 7.8246 0.2799 0.7793 0.0714 8.6039 0.2889

2011 8.7668 0.2650 0.7298 0.0720 9.4965 0.2746

2012 10.0959 0.3199 0.8612 0.1769 10.9571 0.3655

2013 10.0335 0.3586 0.7628 0.0744 10.7963 0.3662

2014 10.3989 0.3429 0.6459 0.0681 11.0448 0.3496

2015 11.1724 0.3582 0.6202 0.0514 11.7926 0.3619

2016 11.2083 0.3615 0.6925 0.0707 11.9008 0.3684

2017 9.9500 0.3298 0.6927 0.0523 10.6427 0.3339

2018 8.8044 0.2955 0.7634 0.0702 9.5678 0.3037

2019 9.0624 0.2823 0.6698 0.0679 9.7322 0.2903

2020 8.3372 1.4270 0.7310 0.1178 9.0681 1.4318
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Model Structure

Collectively, the models express uncertainty (or disagreement) about whether harvest is an additive or com-
pensatory form of mortality (Burnham et al. 1984), and whether the reproductive process is weakly or strongly
density-dependent (i.e., the degree to which reproductive rates decline with increasing population size).

All population models for mid-continent mallards share a common “balance equation” to predict changes in
breeding-population size as a function of annual survival and reproductive rates:

𝑁𝑡+1 = 𝑁𝑡 (𝑚𝑆𝑡,𝐴𝑀 + (1−𝑚)(𝑆𝑡,𝐴𝐹 +𝑅𝑡(𝑆𝑡,𝐽𝐹 + 𝑆𝑡,𝐽𝑀𝜑𝑠𝑢𝑚
𝐹 /𝜑𝑠𝑢𝑚

𝑀 )))

where:

N=breeding population size,

m = proportion of males in the breeding population,

𝑆𝐴𝑀 , 𝑆𝐴𝐹 , 𝑆𝐽𝐹 , and 𝑆𝐽𝑀 = survival rates of adult males, adult females, young females, and young
males, respectively,

R = reproductive rate, defined as the fall age ratio of females,

𝜑𝑠𝑢𝑚
𝐹 /𝜑𝑠𝑢𝑚

𝑀 = the ratio of female (F ) to male (M ) summer survival, and t = year.

We assumed that m and 𝜑𝑠𝑢𝑚
𝐹 /𝜑𝑠𝑢𝑚

𝑀 are fixed and known. We also assumed, based in part on information
provided by Blohm et al. (1987), the ratio of female to male summer survival was equivalent to the ratio of
annual survival rates in the absence of harvest. Based on this assumption, we estimated 𝜑𝑠𝑢𝑚

𝐹 /𝜑𝑠𝑢𝑚
𝑀 = 0.897.

To estimate m we expressed the balance equation in matrix form:

[︃
𝑁𝑡+1,𝐴𝑀

𝑁𝑡+1,𝐴𝐹

]︃
=

[︃
𝑆𝐴𝑀 𝑅𝑆𝐽𝑀𝜑𝑠𝑢𝑚

𝐹 /𝜑𝑠𝑢𝑚
𝑀

0 𝑆𝐴𝐹 +𝑅𝑆𝐽𝐹

]︃ [︃
𝑁𝑡,𝐴𝑀

𝑁𝑡,𝐴𝐹

]︃

and substituted the constant ratio of summer survival and means of estimated survival and reproductive
rates. The right eigenvector of the transition matrix is the stable sex structure that the breeding population
eventually would attain with these constant demographic rates. This eigenvector yielded an estimate of
m = 0.5246.

Using estimates of annual survival and reproductive rates, the balance equation for mid-continent mallards
over-predicted observed population sizes by 11.0% on average. The source of the bias is unknown, so we
modified the balance equation to eliminate the bias by adjusting both survival and reproductive rates:

𝑁𝑡+1 = 𝛾𝑆𝑁𝑡 (𝑚𝑆𝑡,𝑎𝑚 + (1−𝑚) (𝑆𝑡,𝐴𝐹 + 𝛾𝑅𝑅𝑡 (𝑆𝑡,𝐽𝐹 + 𝑆𝑡,𝐽𝑀𝜑𝑠𝑢𝑚
𝐹 /𝜑𝑠𝑢𝑚

𝑀 )))

where 𝛾 denotes the bias-correction factors for survival (S), and reproduction (R). We used a least squares
approach to estimate 𝛾𝑆 = 0.9407 and 𝛾𝑅 = 0.8647.

Survival Process

We considered two alternative hypotheses for the relationship between annual survival and harvest rates. For
both models, we assumed that survival in the absence of harvest was the same for adults and young of the
same sex. In the model where harvest mortality is additive to natural mortality:

𝑆𝑡,𝑠𝑒𝑥,𝑎𝑔𝑒 = 𝑆𝐴
0,𝑠𝑒𝑥(1−𝐾𝑡,𝑠𝑒𝑥,𝑎𝑔𝑒)
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and in the model where changes in natural mortality compensate for harvest losses (up to some threshold):

𝑆𝑡,𝑠𝑒𝑥,𝑎𝑔𝑒 =

{︃
𝑠𝐶0,𝑠𝑒𝑥 𝑖𝑓 𝐾𝑡,𝑠𝑒𝑥,𝑎𝑔𝑒 ≤ 1− 𝑠𝐶0,𝑠𝑒𝑥

1−𝐾𝑡,𝑠𝑒𝑥,𝑎𝑔𝑒 𝑖𝑓 𝐾𝑡,𝑠𝑒𝑥,𝑎𝑔𝑒 > 1− 𝑠𝐶0,𝑠𝑒𝑥

where 𝑠0 = survival in the absence of harvest under the additive (A) or compensatory (C ) model, and K =
harvest rate adjusted for crippling loss (20%, Anderson and Burnham 1976). We averaged estimates of 𝑠0
across banding reference areas by weighting by breeding-population size. For the additive model, 𝑠0 = 0.7896
and 0.6886 for males and females, respectively. For the compensatory model, 𝑠0 = 0.6467 and 0.5965 for
males and females, respectively. These estimates may seem counterintuitive because survival in the absence
of harvest should be the same for both models. However, estimating a common (but still sex-specific) 𝑠0
for both models leads to alternative models that do not fit available band-recovery data equally well. More
importantly, it suggests that the greatest uncertainty about survival rates is when harvest rate is within the
realm of experience. By allowing 𝑠0 to differ between additive and compensatory models, we acknowledge
that the greatest uncertainty about survival rate is its value in the absence of harvest (i.e., where we have no
experience).

Reproductive Process

Annual reproductive rates were estimated from age ratios in the harvest of females, corrected using a constant
estimate of differential vulnerability. Predictor variables were the number of ponds in May in Prairie Canada
(P, in millions) and the size of the breeding population (N, in millions). We estimated the best-fitting linear
model, and then calculated the 80% confidence ellipsoid for all model parameters. We chose the two points
on this ellipsoid with the largest and smallest values for the effect of breeding-population size, and generated
a weakly density-dependent model:

𝑅𝑡 = 0.7166 + 0.1083𝑃𝑡 − 0.0373𝑁𝑡

and a strongly density-dependent model:

𝑅𝑡 = 1.1390 + 0.1376𝑃𝑡 − 0.1131𝑁𝑡

Predicted recruitment was then rescaled to reflect the current definition of mid-continent mallards which now
excludes birds from Alaska but includes mallards observed in the Great Lakes region.

Pond Dynamics

Wemodeled annual variation in Canadian pond numbers as a first-order autoregressive process. The estimated
model was:

𝑃𝑡+1 = 2.2127 + 0.3420𝑃𝑡 + 𝜀𝑡

where ponds are in millions and 𝜀𝑡 is normally distributed with mean = 0 and variance = 1.2567.
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Variance of Prediction Errors

Using the balance equation and sub-models described above, predictions of breeding-population size in year
t+1 depend only on specification of population size, pond numbers, and harvest rate in year t. For the period
in which comparisons were possible, we compared these predictions with observed population sizes.

We estimated the prediction-error variance by setting:

𝑒𝑡 = ln
(︀
𝑁𝑜𝑏𝑠

𝑡

)︀
− ln (𝑁𝑝𝑟𝑒

𝑡 )

𝑒𝑡 ∼ 𝑁
(︀
0, 𝜎2

)︀
𝜎2 =

∑︀
𝑡

[︀
ln
(︀
𝑁𝑜𝑏𝑠

𝑡

)︀
− ln (𝑁𝑝𝑟𝑒

𝑡 )
]︀2

/(𝑛− 1)

where 𝑁𝑜𝑏𝑠 and 𝑁𝑝𝑟𝑒 are observed and predicted population sizes (in millions), respectively, and n = the
number of years being compared. We were concerned about a variance estimate that was too small, either
by chance or because the number of years in which comparisons were possible was small. Therefore, we
calculated the upper 80% confidence limit for 𝜎2 based on a Chi-squared distribution for each combination
of the alternative survival and reproductive sub-models, and then averaged them. The final estimate of 𝜎2

was 0.0280, equivalent to a coefficient of variation of about 16.85%.

Model Implications

The population model with additive hunting mortality and weakly density-dependent recruitment (SaRw)
leads to the most conservative harvest strategy, whereas the model with compensatory hunting mortality
and strongly density-dependent recruitment (ScRs) leads to the most liberal strategy. The other two models
(SaRs and ScRw) lead to strategies that are intermediate between these extremes. Under the models with
compensatory hunting mortality (ScRs and ScRw), the optimal strategy is to have a liberal regulation re-
gardless of population size or number of ponds because at harvest rates achieved under the liberal alternative,
harvest has no effect on population size. Under the strongly density-dependent model (ScRs), the density
dependence regulates the population and keeps it within narrow bounds. Under the weakly density dependent
model (ScRw), the density-dependence does not exert as strong a regulatory effect, and the population size
fluctuates more.

Model Weights

Model weights are calculated as Bayesian probabilities, reflecting the relative ability of the individual alter-
native models to predict observed changes in population size. The Bayesian probability for each model is a
function of the model’s previous (or prior) weight and the likelihood of the observed population size under
that model. We used Bayes’ theorem to calculate model weights from a comparison of predicted and observed
population sizes for the years 1996–2019, starting with equal model weights in 1995.
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Appendix I Western Mallard Models

In contrast to mid-continent, we did not model changes in population size for both the Alaska and southern
Pacific Flyway (California, Oregon, Washington, and British Columbia combined) substocks of western mal-
lards (Table I.1) as an explicit function of survival and reproductive rate estimates (which in turn may be
functions of harvest and environmental covariates). We believed this so-called “balance-equation approach”
was not viable for western mallards because of insufficient banding in Alaska to estimate survival rates, and
because of the difficulty in estimating substock-specific fall age ratios from a sample of wings derived from a
mix of breeding stocks.

Table I.1 – Estimates (N) and associated standard errors (SE) of western mallards (in millions) observed in
Alaska (WBPHS strata 1–12) and the southern Pacific Flyway (California, Oregon, Washington, and British
Columbia combined) from 1990 to 2019. The waterfowl breeding population surveys were not conducted in 2020
due to the COVID-19 pandemic; 2020 numbers are based on model predictions.

Alaska CA-ORa WA-BC SO–PFb Total Total

Year N SE N SE N SE N SE N SE

1990 0.3669 0.0370 NA NA NA NA NA NA NA NA

1991 0.3853 0.0363 NA NA NA NA NA NA NA NA

1992 0.3457 0.0387 NA NA NA NA NA NA NA NA

1993 0.2830 0.0295 NA NA NA NA NA NA NA NA

1994 0.3509 0.0371 0.4281 0.0425 NA NA NA NA NA NA

1995 0.5242 0.0680 0.4460 0.0427 NA NA NA NA NA NA

1996 0.5220 0.0436 0.6389 0.0802 NA NA NA NA NA NA

1997 0.5842 0.0520 0.6325 0.1043 NA NA NA NA NA NA

1998 0.8362 0.0673 0.4788 0.0489 NA NA NA NA NA NA

1999 0.7131 0.0696 0.6857 0.1066 NA NA NA NA NA NA

2000 0.7703 0.0522 0.4584 0.0532 NA NA NA NA NA NA

2001 0.7183 0.0541 NA NA NA NA NA NA NA NA

2002 0.6673 0.0507 0.3698 0.0327 NA NA NA NA NA NA

2003 0.8435 0.0668 0.4261 0.0501 NA NA NA NA NA NA

2004 0.8111 0.0639 0.3449 0.0352 NA NA NA NA NA NA

2005 0.7031 0.0547 0.3920 0.0474 NA NA NA NA NA NA

2006 0.5158 0.0469 0.4805 0.0576 NA NA NA NA NA NA

2007 0.5815 0.0551 0.4808 0.0546 NA NA NA NA NA NA

2008 0.5324 0.0468 0.3725 0.0478 NA NA NA NA NA NA

2009 0.5030 0.0449 0.3746 0.0639 NA NA NA NA NA NA

2010 0.6056 0.0531 0.4347 0.0557 0.1740 0.0132 0.6087 0.0572 1.2143 0.0781

2011 0.4158 0.0388 0.3763 0.0452 0.1411 0.0117 0.5174 0.0467 0.9332 0.0607

2012 0.5056 0.0511 0.4759 0.0550 0.1650 0.0117 0.6409 0.0563 1.1465 0.0760

2013 0.3384 0.0382 0.3830 0.0527 0.1573 0.0117 0.5403 0.0540 0.8787 0.0661

2014 0.5009 0.0574 0.3239 0.0553 0.1690 0.0123 0.4929 0.0566 0.9938 0.0806

2015 0.4709 0.0509 0.2612 0.0295 0.1678 0.0114 0.4290 0.0316 0.8999 0.0599

2016 0.5842 0.0654 0.3511 0.0365 0.1339 0.0078 0.4850 0.0373 1.0692 0.0753

2017 0.5385 0.0519 0.2701 0.0324 0.1743 0.0120 0.4444 0.0346 0.9828 0.0624

2018 0.4508 0.0451 0.3700 0.0436 0.2042 0.0115 0.5743 0.0451 1.0250 0.0637

2019 0.3611 0.0353 0.3237 0.0330 0.2008 0.0142 0.5245 0.0359 0.8855 0.0504

2020 0.4086 0.0731 NA NA NA NA 0.5325 0.0559 0.9411 0.0920

a Available California survey estimates begin in 1992; Oregon surveys estimates begin in 1994 and were unavailable in 2001.
b Southern Pacific Flyway includes California, Oregon, Washington, and British Columbia observations.
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Model Structure

To evaluate western mallard population dynamics, we used a discrete logistic model (Schaefer 1954), which
combines reproduction and natural mortality into a single parameter r, the intrinsic rate of growth. The
model assumes density-dependent growth, which is regulated by the ratio of population size, N, to the
carrying capacity of the environment, K (i.e., equilibrium population size in the absence of harvest). In
the traditional formulation, harvest mortality is additive to other sources of mortality, but compensation for
hunting losses can occur through subsequent increases in production. However, we parameterized the model
in a way that also allows for compensation of harvest mortality between the hunting and breeding seasons.
It is important to note that compensation modeled in this way is purely phenomenological, in the sense
that there is no explicit ecological mechanism for compensation (e.g., density-dependent mortality after the
hunting season). The basic model for both the Alaska and southern Pacific Flyway substocks has the form:

𝑁𝑡+1 =

[︂
𝑁𝑡 +𝑁𝑡𝑟

(︂
1− 𝑁𝑡

𝐾

)︂]︂
(1− 𝛼𝑡)

where,

𝛼𝑡 = 𝑑ℎ𝐴𝑀
𝑡

and where t = year, ℎ𝐴𝑀 = the harvest rate of adult males, and d = a scaling factor. The scaling factor is
used to account for a combination of unobservable effects, including un-retrieved harvest (i.e., crippling loss),
differential harvest mortality of cohorts other than adult males, and for the possibility that some harvest
mortality may not affect subsequent breeding-population size (i.e., the compensatory mortality hypothesis).

Estimation Framework

We used Bayesian estimation methods in combination with a state-space model that accounts explicitly for
both process and observation error in breeding population size. This combination of methods is becoming
widely used in natural resource modeling, in part because it facilitates the fitting of non-linear models that
may have non-normal errors (Meyer and Millar 1999). The Bayesian approach also provides a natural and
intuitive way to portray uncertainty, allows one to incorporate prior information about model parameters, and
permits the updating of parameter estimates as further information becomes available. Breeding population
data are available for California and Oregon from 1994–2019 (except for 2001), British Columbia from 2006–
2019, and Washington from 2010–2019 (see Table I.1). We attempted to use correlations with adjacent states
to impute data back to 1992 for WA and BC, but could not find a reasonable correlation between those surveys
and other regions (potentially due to a short time series). Therefore, we imputed population estimates for
BC and WA by sampling values from the mean and variance within the MCMC framework. Specifically, we
calculated the total mean and variance of breeding population sizes based on observed data (2006–2019 for
British Columbia, and 2010–2019 for Washington), and then used those means and variances to sample a
population size for the missing years (1992–2005 for British Columbia; and 1992–2009 for Washington) during
each iteration of MCMC sampling. Although this approach imputes values based on a random draw, it does
acknowledge added uncertainty in those estimates compared to the years with observed data. Further, given
the low annual variability and lack of trend, we have no evidence that the recent survey estimates used to
generate the mean and variance are not a reasonable approximation of historical breeding population sizes.

We first scaled N by K as recommended by Meyer and Millar (1999), and assumed that process errors were
lognormally distributed with mean 0 and variance 𝜎2. Thus, the process model had the form:

𝑃𝑡 = 𝑁𝑡/𝐾

log(𝑃𝑡) = log
(︀
[𝑃𝑡−1 + 𝑃𝑡−1𝑟 (1− 𝑃𝑡−1)]

(︀
1− 𝑑ℎ𝐴𝑀

𝑡−1

)︀)︀
+ 𝑒𝑡
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where,

𝑒𝑡 ∼ 𝑁(0, 𝜎2)

The observation model related the unknown population sizes (𝑃𝑡𝐾) to the population sizes (𝑁𝑡) estimated
from the breeding-population surveys in Alaska and southern Pacific Flyway. We assumed that the observa-
tion process yielded additive, normally distributed errors, which were represented by:

𝑁𝑡 = 𝑃𝑡𝐾 + 𝜀𝐵𝑃𝑂𝑃
𝑡 ,

where,

𝜀𝐵𝑃𝑂𝑃
𝑡 ∼ 𝑁(0, 𝜎2

𝐵𝑃𝑂𝑃 ).

permitting us to estimate the process error, which reflects the inability of the model to completely describe
changes in population size. The process error reflects the combined effect of misspecification of an appropriate
model form, as well as any un-modeled environmental drivers. We initially examined a number of possible
environmental covariates, including the Palmer Drought Index in California and Oregon, spring temperature
in Alaska, and the El Niño Southern Oscillation Index (http://www.cdc.noaa.gov/people/klaus.wolter/MEI/
mei.html). While the estimated effects of these covariates on r or K were generally what one would expect,
they were never of sufficient magnitude to have a meaningful effect on optimal harvest strategies. We therefore
chose not to further pursue an investigation of environmental covariates, and posited that the process error
was a sufficient surrogate for these un-modeled effects. Parameterization of the models also required measures
of harvest rate. Beginning in 2002, harvest rates of adult males were estimated directly from the recovery of
reward bands. Prior to 1993, we used direct recoveries of standard bands, corrected for band-reporting rates
provided by Nichols et al. (1995b). We also used the band-reporting rates provided by Nichols et al. (1995b)
for estimating harvest rates in 1994 and 1995, except that we inflated the reporting rates of full-address
and toll-free bands based on an unpublished analysis by Clint Moore and Jim Nichols (Patuxent Wildlife
Research Center). We were unwilling to estimate harvest rates for the years 1996–2001 because of suspected,
but unknown, increases in the reporting rates of all bands. For simplicity, harvest rate estimates were treated
as known values in our analysis, although future analyses might benefit from an appropriate observation
model for these data.

In a Bayesian analysis, one is interested in making probabilistic statements about the model parameters
(𝜃), conditioned on the observed data. Thus, we are interested in evaluating 𝑃 (𝜃|𝑑𝑎𝑡𝑎), which requires
the specification of prior distributions for all model parameters and unobserved system states (𝜃) and the
sampling distribution (likelihood) of the observed data 𝑃 (𝑑𝑎𝑡𝑎|𝜃). Using Bayes theorem, we can represent
the posterior probability distribution of model parameters, conditioned on the data, as:

𝑃 (𝜃|𝑑𝑎𝑡𝑎) ∝ 𝑃 (𝜃)× 𝑃 (𝑑𝑎𝑡𝑎|𝜃)

Accordingly, we specified prior distributions for model parameters r, K, d, and 𝑃0, which is the initial
population size relative to carrying capacity. For both substocks, we specified the following prior distributions
for r, d, and 𝜎2:

𝑟 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(−1.0397, 0.69315)

𝑑 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2)

𝜎2 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒− 𝑔𝑎𝑚𝑚𝑎(0.001, 0.001)
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The prior distribution for r is centered at 0.35, which we believe to be a reasonable value for mallards based on
life-history characteristics and estimates for other avian species. Yet the distribution also admits considerable
uncertainty as to the value of r within what we believe to be realistic biological bounds. As for the harvest-rate
scalar, we would expect 𝑑 ≥ 1 under the additive hypothesis and 𝑑 < 1 under the compensatory hypothesis.
As we had no data to specify an informative prior distribution, we specified a vague prior in which d could
take on a wide range of values with equal probability. We used a traditional, uninformative prior distribution
for 𝜎2. Prior distributions for K and 𝑃0 were substock-specific and are described in the following sections.

We used the public-domain software JAGS (Plummer (2003); https://sourceforge.net/projects/mcmc-jags)
to derive samples from the joint posterior distribution of model parameters via MCMC simulations. We
obtained 800,000 samples from the joint posterior distribution, discarded the first 700,000, and then thinned
the remainder by 50, resulting in a sample of 2,000 for each of 5 chains, or 10,000 total samples.

Alaska mallards

Data selection—Breeding population estimates of mallards in Alaska (and the Old Crow Flats in Yukon)
are available since 1955 in WBPHS strata 1–12 (Smith 1995). However, a change in survey aircraft in 1977
instantaneously increased the detectability of waterfowl, and thus population estimates (Hodges et al. 1996).
Moreover, there was a rapid increase in average annual temperature in Alaska at the same time, apparently
tied to changes in the frequency and intensity of El Niño events (http://www.cdc.noaa.gov/people/klaus.
wolter/MEI/mei.html). This confounding of changes in climate and survey methods led us to truncate the
years 1955–1977 from the time series of population estimates.

Modeling of the Alaska substock also depended on the availability of harvest-rate estimates derived from
band-recovery data. Unfortunately, sufficient numbers of mallards were not banded in Alaska prior to 1990.
A search for covariates that would have allowed us to make harvest-rate predictions for years in which band-
recovery data were not available was not fruitful, and we were thus forced to further restrict the time series
to 1990 and later. Even so, harvest rate estimates were not available for the years 1996–2001, and 2014
because of unknown changes in band-reporting rates or lack of banding data. Because available estimates of
harvest rate showed no apparent variation over time, we simply used the mean and standard deviation of the
available estimates and generated independent samples of predictions for the missing years based on a logit
transformation and an assumption of normality:

𝑙𝑛

(︂
ℎ𝑡

1− ℎ𝑡

)︂
∼ 𝑁𝑜𝑟𝑚𝑎𝑙(−2.4209, 0.0659) for t = 1996–2001, and 2014.

Prior distributions for K and 𝑃0—We believed that sufficient information was available to use mildly informa-
tive priors for K and 𝑃0. During the development of this framework, the Alaska substock had approximately
0.8 million mallards. If harvest rates have been comparable to that necessary to achieve maximum sustained
yield (MSY) under the logistic model (i.e., r/2), then we would expect 𝐾 ≈ 1.6 million. On the other hand, if
harvest rates have been less than those associated with MSY, then we would expect 𝐾 < 1.6 million. Because
we believed it was not likely that harvest rates were > 𝑟/2, we believed the likely range of K to be 0.8–1.6
million. We therefore specified a prior distribution that had a mean of 1.4 million, but had a sufficiently large
variance to admit a wide range of possible values:

𝐾 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0.13035, 0.41224)

Extending this line of reasoning, we specified a prior distribution that assumed the estimated population size
of approximately 0.4 million at the start of the time series (i.e., 1990) was 20–60% of K. Thus on a log scale:

𝑃𝑜 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1.6094,−0.5108)

88

https://sourceforge.net/projects/mcmc-jags
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/mei.html
http://www.cdc.noaa.gov/people/klaus.wolter/MEI/mei.html


Parameter estimates—The logistic model and associated posterior parameter estimates provided a reasonable
fit to the observed time series of population estimates. The posterior means of K and r were similar to their
priors, although their variances were considerably smaller (Table I.2). However, the posterior distribution of
d was essentially the same as its prior, reflecting the absence of information in the data necessary to reliably
estimate this parameter.

Table I.2 – Estimates of model parameters resulting from fitting a discrete logistic model to a time series of
estimated population sizes and harvest rates of mallards breeding in Alaska from 1990 to 2019.

Parameter Mean SD 2.5% CIa Median 97.5% CI

K 1.090 0.321 0.658 1.019 1.878

d 1.286 0.484 0.240 1.354 1.969

r 0.283 0.113 0.089 0.275 0.527

𝜎2 0.024 0.010 0.010 0.022 0.050

a CI = credible interval.

Southern Pacific Flyway (CA-OR-WA-BC) mallards

Data selection—Breeding-population estimates of mallards in California are available starting in 1992, but
not until 1994 in Oregon. Also, Oregon did not conduct a survey in 2001. To avoid truncating the time
series, we used the admittedly weak relationship (P = 0.02) between California-Oregon population estimates
to predict population sizes in Oregon in 1992, 1993, and 2001. The fitted linear model was:

𝑁𝑂𝑅
𝑡 = 60196 + 0.0911(𝑁𝐶𝐴

𝑡 )

To derive realistic standard errors, we assumed that the predictions had the same mean coefficient of variation
as the years when surveys were conducted (n = 24, CV = 0.089). The estimated sizes and variances of the
southern Pacific Flyway substock were calculated by simply summing the state-specific estimates.

We pooled band-recovery data for the southern Pacific Flyway substock and estimated harvest rates in the
same manner as that for Alaska mallards. Although banded sample sizes were sufficient in all years, harvest
rates could not be estimated for the years 1996–2001 because of unknown changes in band-reporting rates.
As with Alaska, available estimates of harvest rate showed no apparent trend over time, and we simply used
the mean and standard deviation of the available estimates and generated independent samples of predictions
for the missing years based on a logit transformation and an assumption of normality:

𝑙𝑛

(︂
ℎ𝑡

1− ℎ𝑡

)︂
∼ 𝑁𝑜𝑟𝑚𝑎𝑙(−1.8615, 0.0267) for t = 1996–2001

Prior distributions for K and 𝑃0—Unlike the Alaska substock, the California-Oregon population had been
relatively stable with a mean of 0.48 million mallards while developing western mallard AHM. We believed
K should be in the range 0.48–0.96 million, assuming the logistic model and that harvest rates were ≤ 𝑟/2.
The addition of Washington and British Columbia mallards to the southern Pacific Flyway substock did not
result in substantive changes to historically stable population dynamics, but increased the overall size of the
southern Pacific Flyway population by approximately 30%. Therefore, we scaled the prior to increase the
expected carrying capacity by 30%. We therefore specified a prior distribution on K that had a mean of 0.8
million, but with a variance sufficiently large to admit a wide range of possible values:

𝐾 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(−0.2262, 0.2638)
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The estimated size of the California-Oregon substock was 0.47 million at the start of the time series (i.e.,
California plus the imputed Oregon estimate in 1992). We used a similar line of reasoning as that for Alaska
for specifying a prior distribution 𝑃0, positing that initial population size was 40-100% of K. Thus on a log
scale:

𝑃𝑜 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−0.9163, 0.0)

Parameter estimates—The logistic model and associated posterior parameter estimates provided a reasonable
fit to the observed time series of population estimates. The posterior means of K and r were similar to their
priors, although the variances were considerably smaller (Table I.3). Interestingly, the posterior mean of d
was < 1, suggestive of a compensatory response to harvest; however the standard deviation of the estimate
was large, with the upper 95% credibility limit > 1.

Table I.3 – Estimates of model parameters resulting from fitting a discrete logistic model to a time series of
estimated population sizes and harvest rates of mallards breeding in the southern Pacific Flyway (California,
Oregon, Washington, and British Columbia combined) from 1992 to 2019.

Parameter Mean SD 2.5% CIa Median 97.5% CI

K 0.843 0.194 0.598 0.795 1.345

d 0.534 0.358 0.046 0.461 1.407

r 0.285 0.167 0.066 0.250 0.703

𝜎2 0.008 0.005 0.002 0.007 0.019

a CI = credible interval.

For each western mallard substock, we further summarized the simulation results for r, K, and the scaling
factor d to admit parametric uncertainty with a formal correlation structure within the optimization procedure
used to calculate the harvest strategy. We first defined a joint distribution for 3 discrete outcomes for each of
the 3 population parameters. We used the 30 and 70 percent quantiles for each parameter as the cut points
to define three bins for which to discretize 3 values of each posterior distribution. We then determined the
frequency of occurrence of each of the 27 possible combinations of each parameter value falling within the 3
bins from the MCMC simulation results. These frequencies were then assigned parameter values based on
the midpoint of bin ranges (15, 50, 85 percent quantiles) to specify the joint distribution of the population
parameter values used in the optimization.
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Appendix J Atlantic Flyway Multi-stock Models

Similar to western mallards we did not have adequate data to model changes in breeding population size of the
species included in the multi-stock framework (Table J.1) to use the balance-equation approach. Therefore,
we used discrete logistic models similar to those used to model western mallard population dynamics. We
initially intended to use the same model structure for all four species in the strategy, but because of the lack
of preseason banding data for ring-necked ducks and goldeneyes, we implemented two different forms of the
discrete logistic model.

Table J.1 – Estimates (N) and associated standard errors (SE) of American green-winged teal (AGWT), wood
ducks (WODU), ring-necked ducks (RNDU), and goldeneyes (GOLD) (in millions) observed in eastern Canada
(WBPHS strata 51–53, 56, 62–72) and U.S. (Atlantic Flyway states) from 1998 to 2019. The waterfowl breeding
population surveys were not conducted in 2020 due to the COVID-19 pandemic; 2020 numbers are based on
model predictions.

AGWTa WODUb RNDUa GOLDa

Year N SE N SE N SE N SE

1998 0.3003 0.0700 0.9588 0.1171 0.5858 0.1274 0.5505 0.1452

1999 0.3887 0.0769 0.9737 0.1191 0.6948 0.1539 0.6599 0.1378

2000 0.3567 0.0637 0.9342 0.1119 0.9210 0.3552 0.6425 0.1703

2001 0.2985 0.0578 0.9238 0.1106 0.6584 0.1235 0.7462 0.1836

2002 0.4056 0.0736 0.9563 0.1143 0.6697 0.1128 0.8526 0.2170

2003 0.3930 0.0843 0.9185 0.1118 0.6701 0.0987 0.6448 0.1899

2004 0.4635 0.0974 0.9383 0.1267 0.7375 0.1486 0.5925 0.1385

2005 0.3404 0.0746 0.9206 0.1112 0.6225 0.0900 0.5170 0.1070

2006 0.3332 0.0699 0.9526 0.1145 0.6542 0.1048 0.4740 0.1005

2007 0.4406 0.1338 0.9570 0.1157 0.8330 0.1195 0.6613 0.1549

2008 0.4063 0.0936 0.9235 0.1132 0.6713 0.1238 0.6268 0.1571

2009 0.4290 0.1047 0.9423 0.1143 0.6839 0.1349 0.5419 0.1265

2010 0.4171 0.1069 0.9351 0.1125 0.6759 0.1173 0.5348 0.1322

2011 0.4023 0.1057 0.9461 0.1141 0.6093 0.0961 0.5459 0.1215

2012 0.3647 0.0878 0.9786 0.1192 0.6331 0.1180 0.5747 0.1696

2013 0.4001 0.2186 0.9874 0.1250 0.7832 0.4361 0.6203 NAc

2014 0.3058 0.0719 0.9962 0.1211 0.5968 0.0999 0.5800 0.2081

2015 0.3126 0.0751 0.9870 0.1211 0.7132 0.1947 0.4390 0.1024

2016 0.3194 0.0802 1.0022 0.1242 0.7326 0.1389 0.5034 0.1404

2017 0.3447 0.0695 1.0365 0.1486 0.6119 0.1282 0.5616 0.1570

2018 0.3395 0.0749 0.9901 0.1243 0.6275 0.1289 0.4891 0.1291

2019 0.3028 0.0634 1.0189 0.1215 0.6935 0.1513 0.5159 0.1489

2020 0.3502 0.0377 0.9409 0.0727 0.7026 0.0695 0.5761 0.0996

a Breeding population size estimates from eastern survey area (WBPHS strata 51–53, 56, 62–72)
b Breeding population size estimates from Atlantic Flyway states (Florida north to Maine)
c The SE of the goldeneyes estimate for 2013 is not reported due to insufficient counts.

Model Structures

We had sufficient preseason bandings for American green-winged teal and wood ducks to estimate harvest
rates directly from band recovery analysis, so we used a similar model to western mallards:
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𝑁𝑡+1 =

[︂
𝑁𝑡 +𝑁𝑡𝑟

(︂
1− 𝑁𝑡

𝐾

)︂]︂
(1− ℎ𝑡),

where N = breeding population size, r = the maximum intrinsic growth rate, K = carrying capacity,
and h = harvest rate estimated from banding data. The model does not have age or sex structure and
banding summaries indicated reasonable sample sizes for adults and juveniles of both sexes, so we pooled all
banding data when estimating an overall population harvest rate. This form of the discrete logistic model
assumes that density dependent growth (or declines) are instantaneous and loss to harvest occurs following the
instantaneous growth [i.e., next year’s population is based on the current year population, density dependent
growth, and surviving the hunting season at a rate equal to (1 − ℎ)]. This model assumes that harvest is
additive and r and K provide a measure of the harvest potential for these species.

Because we did not have sufficient data to estimate harvest rates for ring-necked ducks and goldeneyes, we
used a slightly modified version of the above model that includes total harvest rather than harvest rate:

𝑁𝑡+1 =

[︂
𝑁𝑡 +𝑁𝑡𝑟

(︂
1− 𝑁𝑡

𝐾

)︂]︂
− 𝑑𝐻𝑡,

where H = total harvest in number of birds, and d = a scaling parameter to account for incomplete overlap
between the spatial scale for which H and N are calculated (i.e., breeding population surveys are limited to a
discrete region in eastern U.S. and Canada, whereas the harvest data can be collected from birds that breed
outside of the survey region).

Estimation Framework

We used Bayesian estimation methods with a state-space model (Meyer and Millar 1999) to estimate the
parameters of the discrete logistic model for all four species in the multi-stock framework. This modeling
approach allows us to explicitly model the process (i.e., the unobservable true underlying dynamics of the
population) and observation (sampling a portion of the population) components that generated the observed
data. As recommended by Meyer and Millar (1999), we scaled N by K to help improve convergence and
assumed that the process error was lognormally distributed. Therefore, the process model for American
green-winged teal and wood ducks was:

log(𝑃𝑡) = log ([𝑃𝑡−1 + 𝑃𝑡−1𝑟 (1− 𝑃𝑡−1)] (1− ℎ𝑡−1)) + 𝑒𝑡,

whereas the process model for ring-necked ducks and goldeneyes was:

log(𝑃𝑡) = log
(︁
[𝑃𝑡−1 + 𝑃𝑡−1𝑟 (1− 𝑃𝑡−1)]− 𝑑𝐻𝑡−1

𝐾

)︁
+ 𝑒𝑡,

with

𝑃𝑡 = 𝑁𝑡/𝐾, 𝑎𝑛𝑑

𝑒𝑡 ∼ 𝑁(0, 𝜎2)

for both model structures. The process error (𝑒𝑡) represents the inability of the discrete logistic model to
accurately characterize population changes. We assumed that the standard errors for the breeding population
size estimates were normally distributed and linked the process model to the observed data as:

𝑁𝑡 = 𝑃𝑡𝐾 + 𝜀𝐵𝑃𝑂𝑃
𝑡 ,
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where

𝜀𝐵𝑃𝑂𝑃
𝑡 ∼ 𝑁(0, 𝜎2

𝐵𝑃𝑂𝑃 ).

The posterior estimates for the discrete logistic parameters for each species are listed in Table J.2.

Table J.2 – Estimates of model parameters resulting from fitting a discrete logistic model to a time series of
estimated population sizes and harvest rates of American green-winged teal (AGWT), wood ducks (WODU),
ring-necked ducks (RNDU), and goldeneyes (GOLD) breeding in eastern Canada and U.S. from 1998 to 2019.

Parameter Species Mean SD 2.5% CIa Median 97.5% CI

K AGWT 0.5398 0.0708 0.4158 0.5291 0.6863

K WODU 1.5919 0.2014 1.2617 1.5632 2.0229

K RNDU 0.9024 0.1641 0.6490 0.8745 1.2395

K GOLD 0.7332 0.1292 0.5239 0.7077 1.0132

𝑃0 AGWT 0.5993 0.0773 0.4405 0.6050 0.7336

𝑃0 WODU 0.5769 0.0753 0.4309 0.5804 0.7060

𝑃0 RNDU 0.6287 0.0710 0.4740 0.6372 0.7531

𝑃0 GOLD 0.6637 0.0964 0.4588 0.6662 0.8512

d AGWT NA NA NA NA NA

d WODU NA NA NA NA NA

d RNDU 0.5376 0.2753 0.0669 0.5577 0.9983

d GOLD 0.5887 0.2814 0.0848 0.6296 1.0000

r AGWT 0.4424 0.1071 0.2587 0.4287 0.6579

r WODU 0.4001 0.0838 0.2630 0.3875 0.5669

r RNDU 0.4153 0.1086 0.2278 0.4008 0.6329

r GOLD 0.2332 0.0528 0.1374 0.2271 0.3381

𝜎2 AGWT 0.0052 0.0061 0.0002 0.0032 0.0165

𝜎2 WODU 0.0023 0.0020 0.0002 0.0017 0.0061

𝜎2 RNDU 0.0038 0.0044 0.0002 0.0023 0.0118

𝜎2 GOLD 0.0140 0.0139 0.0002 0.0099 0.0402

a CI = credible interval.

Data—The USFWS and Atlantic Flyway agreed to use breeding population size data from the largest area
possible for the multi-stock AHM framework. The complete eastern Canada and Maine area has been surveyed
since 1998 and is the largest area representing breeding population sizes of American green-winged teal, ring-
necked ducks, and goldeneyes that are harvested in the Atlantic Flyway. The BBS survey (1966–current) and
AFBWS (1993–current) data that are used to estimate wood duck breeding population size provide a longer
time series for that species in the Atlantic Flyway. However, changes in band inscriptions and the lack of an
appropriate reporting rate for adjusting harvest rate for that species during the mid-1990s precluded us from
estimating reliable harvest rates that were needed for the discrete logistic model. Therefore, we limited the
data for all species to 1998–current for the Atlantic Flyway multi-stock AHM framework (see Table J.1).

Prior distributions —Inferences from Bayesian analyses are derived from posterior distributions that are
proportional to the likelihood of the data given model parameters multiplied by the prior probabilities of
those parameters. We used two different approaches for estimating prior distributions for K and r. For K,
we used a uniform prior because we had no a priori information that could allow us to put more weight on a
specific K for each species. However, we felt we could identify endpoints for the uniform distribution as the
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mean observed population size (i.e., current harvest levels are completely compensatory) and double the mean
observed population size (i.e., populations are currently being harvested at maximum sustainable yield [MSY]
and are at 1

2𝐾). We extended the uniform prior 20% less and 20% greater than these end points to account
for uncertainty in observational data. These prior values were based on observed breeding population sizes
from 1998 to 2015, which represented the extent of the time series when the development of the multi-stock
framework first began. We felt that we had a more justifiable theoretical basis to estimate a non-uniform
prior for r based on previous research. For each species, we used the demographic invariant method (Niel
and Lebreton 2005) with survival rate estimates based on an allometric relationship between species mass
and survival in captive birds (Johnson et al. 2012) to develop informed lognormal priors (Table J.3). We
used a non-informative inverse gamma prior for estimating process variation.

Table J.3 – Lognormal mean and standard deviations (SD) used to describe the prior distributions for maximum
intrinsic growth rate (r) for American green-winged teal (AGWT), wood ducks (WODU), ring-necked ducks
(RNDU), and goldeneyes (GOLD) in eastern Canada and U.S.

Species Mean SD

AGWT −0.80396 0.23495

WODU −0.89116 0.24417

RNDU −0.90198 0.24294

GOLD −1.42346 0.20831
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Appendix K Modeling Waterfowl Harvest Rates

Mid-continent Mallards

We modeled harvest rates of mid-continent mallards within a Bayesian hierarchical framework. We developed
a set of models to predict harvest rates under each regulatory alternative as a function of the harvest rates
observed under the liberal alternative, using historical information. We modeled the probability of regulation-
specific harvest rates (h) based on normal distributions with the following parameterizations:

Closed: 𝑝(ℎ𝐶) ∼ 𝑁(𝜇𝐶 , 𝜈
2
𝐶)

Restrictive: 𝑝(ℎ𝑅) ∼ 𝑁(𝜇𝑅, 𝜈
2
𝑅)

Moderate: 𝑝(ℎ𝑀 ) ∼ 𝑁(𝜇𝑀 , 𝜈2𝑀 )

Liberal: 𝑝(ℎ𝐿) ∼ 𝑁(𝜇𝐿, 𝜈
2
𝐿)

For the restrictive and moderate alternatives we introduced the parameter 𝛾 to represent the relative difference
between the harvest rate observed under the liberal alternative and the moderate or restrictive alternatives.
Based on this parameterization, we are making use of the information that has been gained (under the liberal
alternative) and are modeling harvest rates for the restrictive and moderate alternatives as a function of
the mean harvest rate observed under the liberal alternative. For the harvest-rate distributions assumed
under the restrictive and moderate regulatory alternatives, we specified that 𝛾𝑅 and 𝛾𝑀 are equal to the
prior estimates of the predicted mean harvest rates under the restrictive and moderate alternatives divided
by the prior estimates of the predicted mean harvest rates observed under the liberal alternative. Thus,
these parameters act to scale the mean of the restrictive and moderate distributions in relation to the mean
harvest rate observed under the liberal regulatory alternative. We also considered the marginal effect of
framework-date extensions under the moderate and liberal alternatives by including the parameter 𝛿𝑓 .

To update the probability distributions of harvest rates realized under each regulatory alternative, we first
needed to specify a prior probability distribution for each of the model parameters. These distributions
represent prior beliefs regarding the relationship between each regulatory alternative and the expected harvest
rates. We used a normal distribution to represent the mean and a scaled inverse-chi-square distribution to
represent the variance of the normal distribution of the likelihood. For the mean (𝜇) of each harvest-rate
distribution associated with each regulatory alternative, we use the predicted mean harvest rates provided in
(U.S. Fish and Wildlife Service 2000, 13–14), assuming uniformity of regulatory prescriptions across Flyways.
We set prior values of each standard deviation (𝜈) equal to 20% of the mean (CV = 0.2) based on an analysis
by Johnson et al. (1997). We then specified the following prior distributions and parameter values under each
regulatory package:

Closed (in U.S. only):

𝑝(𝜇𝐶) ∼ 𝑁
(︁
0.0088, 0.00182

6

)︁
𝑝(𝜈2𝐶) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0.00182)

These closed-season parameter values are based on observed harvest rates in Canada during the 1988–93
seasons, which was a period of restrictive regulations in both Canada and the United States.

For the restrictive and moderate alternatives, we specified that the standard error of the normal distribution
of the scaling parameter is based on a coefficient of variation for the mean equal to 0.3. The scale parameter
of the inverse-chi-square distribution was set equal to the standard deviation of the harvest rate mean under
the restrictive and moderate regulation alternatives (i.e., CV = 0.2).
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Restrictive:

𝑝(𝛾𝑅) ∼ 𝑁
(︁
0.51, 0.152

6

)︁
𝑝(𝜈2𝑅) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0.01332)

Moderate:

𝑝(𝛾𝑀 ) ∼ 𝑁
(︁
0.85, 0.262

6

)︁
𝑝(𝜈2𝑟 ) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0.02232)

Liberal:

𝑝(𝜇𝐿) ∼ 𝑁
(︁
0.1305, 0.02612

6

)︁
𝑝(𝜈2𝑅) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0.02612)

The prior distribution for the marginal effect of the framework-date extension was specified as:

𝑝(𝛿𝑓 ) ∼ 𝑁
(︀
0.02, 0.012

)︀
The prior distributions were multiplied by the likelihood functions based on the last 22 years of data under
liberal regulations, and the resulting posterior distributions were evaluated with Markov chain Monte Carlo
simulation. Posterior estimates of model parameters and of annual harvest rates are provided in Table K.1.

Western Mallards

We modeled harvest rates of western mallards using a similar parameterization as that used for mid-continent
mallards. However, we did not explicitly model the effect of the framework date extension because we did
not use data observed prior to when framework date extensions were available. In the western mallard
parameterization, the effect of the framework date extensions are implicit in the expected mean harvest rate
expected under the liberal regulatory option.

Closed: 𝑝(ℎ𝐶) ∼ 𝑁(𝜇𝐶 , 𝜈
2
𝐶)

Restrictive: 𝑝(ℎ𝑅) ∼ 𝑁(𝛾𝑅𝜇𝐿, 𝜈
2
𝑅)

Moderate: 𝑝(ℎ𝑀 ) ∼ 𝑁(𝛾𝑀𝜇𝐿, 𝜈
2
𝑀 )

Liberal: 𝑝(ℎ𝐿) ∼ 𝑁(𝜇𝐿, 𝜈
2
𝐿)

We set prior values of each standard deviation (𝜈) equal to 30% of the mean (CV = 0.3) to account for
additional variation due to changes in regulations in the other Flyways and their unpredictable effects on the
harvest rates of western mallards. We then specified the following prior distribution and parameter values
for the liberal regulatory alternative:
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Table K.1 – Parameter estimates for predicting mid-continent mallard harvest rates resulting from a hierarchical,
Bayesian analysis of mid-continent mallard band-recovery information from 1998 to 2019.

Parameter Estimate SD Parameter Estimate SD

𝜇𝐶 0.0088 0.0021 ℎ1998 0.1019 0.0068

𝜈𝐶 0.0019 0.0005 ℎ1999 0.0983 0.0070

𝛾𝑅 0.5097 0.0617 ℎ2000 0.1233 0.0082

𝜈𝑅 0.0129 0.0033 ℎ2001 0.0927 0.0084

𝛾𝑀 0.8484 0.1059 ℎ2002 0.1211 0.0042

𝜈𝑀 0.0214 0.0054 ℎ2003 0.1102 0.0041

𝜇𝐿 0.1071 0.0059 ℎ2004 0.1297 0.0047

𝜈𝐿 0.0167 0.0023 ℎ2005 0.1139 0.0053

𝛿𝑓 0.0035 0.0062 ℎ2006 0.1027 0.0043

ℎ2007 0.1125 0.0040

ℎ2008 0.1179 0.0045

ℎ2009 0.1012 0.0035

ℎ2010 0.1108 0.0049

ℎ2011 0.0965 0.0058

ℎ2012 0.1023 0.0048

ℎ2013 0.1045 0.0051

ℎ2014 0.1097 0.0061

ℎ2015 0.1005 0.0065

ℎ2016 0.1122 0.0067

ℎ2017 0.1053 0.0045

ℎ2018 0.0984 0.0044

ℎ2019 0.0952 0.0049
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Table K.2 – Parameter estimates for predicting western mallard harvest rates resulting from a hierarchical,
Bayesian analysis of western mallard band-recovery information from 2008 to 2019.

Parameter Estimate SD Parameter Estimate SD

𝜇𝐶 0.0090 0.0186 ℎ2008 0.1484 0.0065

𝜈𝐶 0.0182 0.0046 ℎ2009 0.1360 0.0058

𝛾𝑅 0.5083 0.0607 ℎ2010 0.1385 0.0062

𝜈𝑅 0.0173 0.0044 ℎ2011 0.1256 0.0055

𝛾𝑀 0.8550 0.1028 ℎ2012 0.1326 0.0055

𝜈𝑀 0.0289 0.0073 ℎ2013 0.0940 0.0047

𝜇𝐿 0.1347 0.0072 ℎ2014 0.1606 0.0072

𝜈𝐿 0.0270 0.0045 ℎ2015 0.1551 0.0069

ℎ2016 0.1588 0.0079

ℎ2017 0.1565 0.0078

ℎ2018 0.1247 0.0060

ℎ2019 0.1298 0.0061

Closed (in US only):

𝑝(𝜇𝐶) ∼ 𝑁
(︁
0.0088, 0.002642

6

)︁
𝑝(𝜈2𝐶) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0.002642)

Restrictive:

𝑝(𝛾𝑅) ∼ 𝑁
(︁
0.51, 0.1532

6

)︁
𝑝(𝜈2𝑅) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0.018672)

Moderate:

𝑝(𝛾𝑀 ) ∼ 𝑁
(︁
0.85, 0.2552

6

)︁
𝑝(𝜈2𝑅) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0, 0.031122)

Liberal:

𝑝(𝜇𝐿) ∼ 𝑁
(︁
0.1220, 0.036612

6

)︁
𝑝(𝜈2𝑅) ∼ 𝑆𝑐𝑎𝑙𝑒𝑑 𝐼𝑛𝑣 − 𝜒2(6, 0.036612)

The prior distributions were multiplied by the likelihood functions based on the last 12 years of data under
liberal regulations, and the resulting posterior distributions were evaluated with Markov chain Monte Carlo
simulation. Posterior estimates of model parameters and of annual harvest rates are provided Table K.2.

Eastern Waterfowl Stocks

We estimated expected harvest rates and associated variances for American green-winged teal and wood ducks
as a function of the Atlantic Flyway’s liberal regulatory alternative using birds banded in eastern Canada and
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the Atlantic Flyway during 1998–2014 (banding reference areas 8, 15, 16; the states of North Carolina, South
Carolina, Georgia, and Florida; the provinces of New Brunswick, Nova Scotia, Newfoundland and Labrador,
Prince Edward Island, and eastern Quebec). We used these bands and their direct recoveries in binomial
models to estimate direct recovery probabilities and then adjusted those recovery probabilities with regional
reporting rates (birds banded in these areas were recovered in eastern Canada, the Atlantic Flyway, and
Mississippi Flyway; Boomer et al. 2013) to estimate harvest rates (U.S. Fish and Wildlife Service 2017). We
pooled age and sex classes for this estimation because the discrete logistic model used for this assessment does
not incorporate age and sex structure. We used Bayesian methods and Markov chain Monte Carlo (MCMC)
methods to estimate annual recovery probabilities and adjusted the recovery probabilities within the MCMC
to obtain variances and incorporate uncertainty in the estimates of reporting rates (Padding et al. 2018).

Banding and recovery data were insufficient for estimating the expected ring-necked duck and goldeneye
harvest rates, so we used annual estimates of harvest (H) from the Harvest Information Program and the
fall population size to make inferences about harvest rate (Runge et al. 2004). We estimated the annual
fall population size (NF) from the discrete logistic model, and then estimated the expected harvest rate as
H/NF (Runge et al. 2004). Therefore, the estimates of harvest rate for ring-necked ducks and goldeneyes
were both calculated as derived parameters in the discrete logistic model used to estimate r and K for
the population. We used Bayesian methods and a state-space model to fit the discrete logistic models and
calculate derived estimates of harvest rate for these species (Appendix J). Breeding population estimates for
ring-necked ducks and goldeneyes in eastern North America were available beginning in 1998, therefore we
estimated the expected harvest rate for both species based on 1998–2014 harvest and population estimates.

Table K.3 – Annual harvest rate estimates (h) and associated standard errors (SE) for American green-winged
teal (AGWT), wood ducks (WODU), ring-necked ducks (RNDU), and goldeneyes (GOLD) in eastern Canada
(WBPHS strata 51–53, 56, 62–72) and U.S. (Atlantic Flyway states) from 1998 to 2019.

AGWTa WODUa RNDUb GOLDb

Year h SE h SE h SE h SE

1998 0.179 0.0254 0.1095 0.0077 0.2381 0.0217 0.039 0.0044

1999 0.1334 0.0096 0.1264 0.0083 0.1786 0.0183 0.0372 0.0043

2000 0.135 0.0093 0.1206 0.0078 0.1264 0.0147 0.0354 0.0042

2001 0.1104 0.0088 0.1393 0.0086 0.1136 0.0132 0.0179 0.0022

2002 0.1025 0.0085 0.1258 0.0074 0.1145 0.0129 0.0247 0.0202

2003 0.1254 0.009 0.1172 0.008 0.1221 0.0135 0.0321 0.006

2004 0.1032 0.0097 0.1094 0.0074 0.0903 0.0103 0.0344 0.0043

2005 0.099 0.0089 0.1136 0.0071 0.1248 0.0129 0.0366 0.0049

2006 0.1041 0.0094 0.1085 0.0065 0.1505 0.0154 0.0285 0.004

2007 0.1043 0.008 0.1077 0.0067 0.1216 0.0131 0.0297 0.0041

2008 0.1112 0.0084 0.1193 0.0072 0.1347 0.0143 0.0348 0.0048

2009 0.1043 0.0092 0.1123 0.0065 0.124 0.0135 0.0277 0.0039

2010 0.1155 0.0088 0.1467 0.0084 0.1 0.0109 0.0242 0.0035

2011 0.1098 0.0082 0.1291 0.0074 0.1566 0.0163 0.0277 0.0041

2012 0.115 0.0094 0.1473 0.0085 0.1929 0.0209 0.0304 0.0048

2013 0.1186 0.0099 0.1217 0.0073 0.1497 0.0187 0.0311 0.0053

2014 0.1072 0.0093 0.1602 0.0093 0.1264 0.0159 0.018 0.0031

2015 0.139 0.0132 0.1328 0.0079 0.1289 0.0161 0.0132 0.0022

2016 0.1183 0.0115 0.1372 0.0083 0.1352 0.0167 0.0185 0.003

2017 0.1222 0.0114 0.175 0.0101 0.1097 0.0136 0.0205 0.0033

2018 0.1114 0.01 0.1334 0.0078 0.1226 0.0147 0.0177 0.0028

2019 0.1178 0.0108 0.1309 0.0075 0.0773 0.0094 0.0189 0.003

a Estimated from band recovery data.
b Estimated from a fall flight and total harvest.
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Table K.4 – Parameter estimates for predicting American green-winged teal (AGWT), wood duck (WODU),
ring-necked duck (RNDU), and goldeneye (GOLD) expected harvest rates for season lengths < 60 days and bag
limits < 6 birds.

Parameter AGWT WODU RNDU GOLD

𝛾𝐶 0.1413 0.0484 0.1904 0.1848

𝛾𝑅 0.4872 0.6048 0.4427 0.2759

𝛾𝑀 0.7607 0.7339 0.7405 0.5172

The Atlantic Flyway has not experienced more restrictive duck hunting regulations (e.g., 30-day season and
a 3-bird limit) since the early 1990s. Furthermore, preseason duck banding efforts in eastern North America
were limited until the 1990s. Therefore, we relied on data collected through the annual USFWS’s Parts
Collection Survey (PCS) to estimate expected harvest rates during seasons < 60 days and/or bag limits
< 6 birds as a proportion of the liberal package (see Padding et al. 2018 for details). We used daily bag
composition data from the PCS to estimate the proportional reduction in harvest of each species that was
expected to result from smaller bag limits under the moderate and restrictive regulatory alternatives (bag
limit effect), following methods described by Martin and Carney (1977) and Balkcom et al. (2010). For each
of the four species, we then summed the expected Flyway-wide reductions due to reduced season lengths and
the expected reduction due to a smaller bag limits to estimate total expected reductions as proportions of the
harvest under the liberal regulatory alternative (i.e., we estimated a 𝛾𝑀 , 𝛾𝑅, 𝛾𝐶 for each species). Therefore,
we estimated the expected harvest rate under the closed, moderate, and restrictive alternatives as

ℎ𝑖 = ℎ𝐿 × 𝛾𝑖,

where i indexes moderate, restrictive, or closed seasons in the U. S.

To estimate the expected effect of a January 31 ending framework date for the liberal and moderate alter-
natives, we relied on the observed effect of a 16-day framework date extension implemented in 2002 that
increased the mallard harvest rate by 0.0052 (U.S. Fish and Wildlife Service 2017, Appendix G). We esti-
mated a mean additional extension of 3 days for the January 31 fixed ending date, and assumed that the effect
per day would be the same as the observed per day effect of the previous extension. The resulting predicted
increase in harvest rate (3/16× 0.0052 = 0.000975) was added to the expected harvest rate estimates for the
liberal and moderate alternatives.
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Appendix L Northern Pintail Models

The Flyway Councils have long identified the northern pintail as a high-priority species for inclusion in the
AHM process. In 2010, the USFWS and Flyway Councils adopted an adaptive management framework to
inform northern pintail harvest management. A detailed progress report that describes the evolution of the
pintail harvest strategy is available online (http://www.fws.gov/migratorybirds/NewsPublicationsReports.
html). The northern pintail adaptive harvest management protocol considers two population models that
represent alternative hypotheses about the effect of harvest on population dynamics: one in which harvest
is additive to natural mortality, and another in which harvest is compensatory to natural mortality. We
describe the technical details of the northern pintail model set below.

Latitude Bias Correction Model

Northern pintails tend to settle on breeding territories farther north during years when the prairies are
dry and farther south during wet years. When pintails settle farther north, a smaller proportion are counted
during the Waterfowl Breeding Population and Habitat Survey (WBPHS strata: 1–18, 20–50, 75–77), thus the
population estimate is biased low in comparison to years when the birds settle farther south. This phenomenon
may be a result of decreased detectability of pintails during surveys in northern latitudes compared to southern
latitudes or because birds settle in regions not covered by the survey. Runge and Boomer (2005) developed
an empirical relationship to correct the observed breeding population estimates for this bias. Based on this
approach, the latitude-adjusted breeding population size (𝑐𝐵𝑃𝑂𝑃𝑡) in year t, can be calculated with

𝑐𝐵𝑃𝑂𝑃𝑡 = 𝑒𝑙𝑛(𝑜𝐵𝑃𝑂𝑃𝑡)+ 0.741(𝑚𝐿𝐴𝑇𝑡 − 51.68)

where 𝑜𝐵𝑃𝑂𝑃𝑡 is the observed breeding population size in year t and 𝑚𝐿𝐴𝑇𝑡 is the mean latitude of the
observed breeding population in year t. The mean latitude of the pintail breeding population distribution
is based on the geographical centroid of each stratum in the traditional survey area (WBPHS strata: 1–18,
20–50, 75–77). In year t, we calculate a mean latitude (𝑚𝐿𝐴𝑇𝑡) weighted by the population estimates from
each strata with

𝑚𝐿𝐴𝑇𝑡 =
∑︁
𝑗

[𝐿𝑎𝑡𝑗(𝑜𝐵𝑃𝑂𝑃𝑡,𝑗/𝑜𝐵𝑃𝑂𝑃𝑡)]

where 𝐿𝑎𝑡𝑗 is the latitude of survey stratum j.

Population Models

Two population models are considered: one in which harvest is additive to natural mortality, and another in
which harvest is compensatory to natural mortality. The models differ in how they handle the winter survival
rate. In the additive model, winter survival rate is a constant, whereas winter survival is density-dependent
in the compensatory model.

For the additive harvest mortality model, the latitude-adjusted population size (𝑐𝐵𝑃𝑂𝑃 ) in year 𝑡 + 1, is
calculated with

𝑐𝐵𝑃𝑂𝑃𝑡+1 =

(︃
𝑐𝐵𝑃𝑂𝑃𝑡𝑠𝑠

(︁
1 + 𝛾𝑅𝑅𝑡

)︁
− 𝐻𝑡

(1− 𝑐)

)︃
𝑠𝑤

101

http://www.fws.gov/migratorybirds/NewsPublicationsReports.html
http://www.fws.gov/migratorybirds/NewsPublicationsReports.html


where 𝑐𝐵𝑃𝑂𝑃𝑡 is the latitude-adjusted breeding population size in year t, 𝑠𝑠 and 𝑠𝑤 are the summer and
winter survival rates, respectively, 𝛾𝑅 is a bias-correction constant for the age-ratio, c is the crippling loss
rate, 𝑅𝑡 is the predicted age-ratio, and 𝐻𝑡 is the predicted continental harvest. The model uses the following
constants: 𝑠𝑠 = 0.70, 𝑠𝑤 = 0.93, 𝛾𝑅 = 0.8, and 𝑐 = 0.20.

The compensatory harvest mortality model serves as a hypothesis that stands in contrast to the additive
harvest mortality model, positing a strong but realistic degree of compensation. The compensatory model
assumes that the mechanism for compensation is density-dependent post-harvest (winter) survival (Runge
2007). The form is a logistic relationship between winter survival and post-harvest population size, with
the relationship anchored around the historic mean values for each variable. For the compensatory model,
predicted winter survival rate in year t (𝑠𝑡) is calculated as

𝑠𝑡 = 𝑠0 + (𝑠1 − 𝑠0)
[︁
1 + 𝑒−(𝑎+ 𝑏(𝑃𝑡 −𝑃 ))

]︁−1

,

where 𝑠1 (upper asymptote) is 1.0, 𝑠0 (lower asymptote) is 0.7, b (slope term) is -1.0, 𝑃𝑡 is the post-harvest
population size in year t (expressed in millions), 𝑃 is the mean post-harvest population size (4.295 million
from 1974 through 2005), and

𝑎 = logit

(︂
𝑠− 𝑠0
𝑠1 − 𝑠0

)︂
or

𝑎 = log

(︂
𝑠− 𝑠0
𝑠1 − 𝑠0

)︂
− log

{︂
1−

(︂
𝑠− 𝑠0
𝑠1 − 𝑠0

)︂}︂
,

where 𝑠 is 0.93 (mean winter survival rate).

Age Ratio Submodel

Recruitment (�̂�) in year t is measured by the vulnerability-adjusted, female age-ratio in the fall population
and is predicted as

𝑅𝑡 = 𝑒(7.6048− 0.13183𝑚𝐿𝐴𝑇𝑡 − 0.09212𝑐𝐵𝑃𝑂𝑃𝑡)

where 𝑚𝐿𝐴𝑇𝑡 is the mean latitude of the observed breeding population in year t and 𝑐𝐵𝑃𝑂𝑃𝑡 is the latitude-
adjusted breeding population in year t (expressed in millions).

Harvest Submodel

Predicted continental harvest (�̂�) in year t is calculated with

�̂�𝑡 = 𝐻𝑃𝐹 +𝐻𝐶𝐹 +𝐻𝑀𝐹 +𝐻𝐴𝐹 +𝐻𝐴𝐾𝐶𝑎𝑛

where 𝐻𝑃𝐹 , 𝐻𝐶𝐹 , 𝐻𝑀𝐹 , and 𝐻𝐴𝐹 are the predicted harvest in the Pacific, Central, Mississippi, and Atlantic
Flyways, respectively. The expected harvest from Alaska and Canada 𝐻𝐴𝐾𝐶𝑎𝑛 is assumed fixed and equal
to 67,000 birds. Flyway specific harvest predictions are calculated with
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Table L.1 – Total pintail harvest expected from the set of regulatory alternatives specified for each Flyway
under the northern pintail adaptive harvest management protocol.

Pacific Central Total

Atlantic Mississippi Harvest

Closed Closed 67,000

Liberal 1 Closed 278,000

Liberal 1 Restrictive 3 410,000

Liberal 1 Moderate 3 523,000

Liberal 1 Liberal 1 569,000

Liberal 2 Closed 357,000

Liberal 2 Restrictive 3 490,000

Liberal 2 Moderate 3 603,000

Liberal 2 Liberal 2 672,000

𝐻𝑃𝐹 = −12051.41 + 1160.960𝑑𝑎𝑦𝑠+ 73911.49𝑏𝑎𝑔

𝐻𝐶𝐹 = −95245.20 + 2946.285𝑑𝑎𝑦𝑠+ 15228.03𝑏𝑎𝑔 + 23136.04𝑠𝑖𝑠

𝐻𝑀𝐹 = −59083.66 + 3413.49𝑑𝑎𝑦𝑠+ 7911.95𝑏𝑎𝑔 + 59510.10𝑠𝑖𝑠

𝐻𝑃𝐹 = −2403.06 + 360.950𝑑𝑎𝑦𝑠+ 5494.00𝑏𝑎𝑔

where 𝑑𝑎𝑦𝑠 is the season length, 𝑏𝑎𝑔 is the daily bag limit, and 𝑠𝑖𝑠 is an indicator variable with value equal to
0 (full season equal to length from general duck season) or 1 (restrictive season within the liberal or moderate
regulatory alternative for general duck season, i.e., partial season). Each regulatory combination of bag limit
and season length has an associated predicted pintail harvest (Table L.1).

Model Weights

The relative degree of confidence that we have in the additive or compensatory mortality hypothesis can be
represented with model weights that are updated annually from a comparison of model specific predictions
and observed population sizes. For the period 1974–2018, the subsequent year’s breeding population size (on
the latitude-adjusted scale) was predicted with both the additive and compensatory models, and compared
to the observed breeding population size (on the latitude-adjusted scale). The mean-squared error of the
predictions from the additive model (𝑀𝑆𝐸𝑎𝑑𝑑) was calculated as:

𝑀𝑆𝐸𝑎𝑑𝑑 =
1

(𝑡− 1975) + 1

𝑡∑︁
𝑡=1975

(︁
𝑐𝐵𝑃𝑂𝑃𝑡 − 𝑐𝐵𝑃𝑂𝑃 𝑎𝑑𝑑

𝑡

)︁2
,

and the mean-squared error of the predictions from the compensatory model were calculated in a similar
manner.

We calculated model weights for the additive and compensatory model as a function of their relative mean-
squared errors. The model weight for the additive model (𝑊𝑎𝑑𝑑) was determined by
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𝑊𝑎𝑑𝑑 =

1

𝑀𝑆𝐸𝑎𝑑𝑑

1

𝑀𝑆𝐸𝑎𝑑𝑑
+

1

𝑀𝑆𝐸𝑐𝑜𝑚𝑝

The model weight for the compensatory model was found in a corresponding manner, or by subtracting the
additive model weight from 1.0. As of 2019, the compensatory model did not fit the historic data as well
as the additive model; the model weights were 0.573 for the additive model and 0.427 for the compensatory
model.

Equilibrium Conditions

Equilibrium analyses of the additive model suggest a carrying capacity of 7.33 million (on the latitude-
adjusted scale), maximum sustained yield (MSY) of 446,000 at an equilibrium population size of 3.30 million,
and harvest rate of 10.9% (Runge and Boomer 2005). The yield curve resulting from the compensatory model
is significantly skewed compared to the additive model (Figure L.1). Compared to the additive model, the
compensatory model results in a lower carrying capacity (4.67 million), a higher MSY (561 thousand) at a
lower equilibrium population size (2.99 million), and a higher maximum harvest rate (14.9%).

The average model, based on 2019 model weights, produces a yield curve that is intermediate between the
additive and compensatory models. An equilibrium analysis of the weighted model results in carrying capacity,
MSY, equilibrium population size at MSY, and maximum harvest rate that are intermediate between the
additive and compensatory model results (5.45 million, 492 thousand, 3.11 million, and 12.6% respectively).
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Figure L.1 – Harvest yield curves resulting from an equilibrium analysis of the northern pintail model set based
on 2019 model weights.
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Appendix M Scaup Model

We use a state-space formulation of scaup population and harvest dynamics within a Bayesian estimation
framework (Meyer and Millar 1999, Millar and Meyer 2000). This analytical framework allows us to repre-
sent uncertainty associated with the monitoring programs (observation error) and the ability of our model
formulation to predict actual changes in the system (process error).

Process Model

Given a logistic growth population model that includes harvest (Schaefer 1954), scaup population and harvest
dynamics are calculated as a function of the intrinsic rate of increase (r), carrying capacity (K ), and harvest
(𝐻𝑡). Following Meyer and Millar (1999), we scaled population sizes by K (i.e., 𝑃𝑡 = 𝑁𝑡/𝐾) and assumed that
process errors (𝜖𝑡) are lognormally distributed with a mean of 0 and variance 𝜎2

𝑝𝑟𝑜𝑐𝑒𝑠𝑠. The state dynamics
can be expressed as

𝑃1974 = 𝑃0𝑒
𝜀1974

𝑃𝑡 = (𝑃𝑡−1 + 𝑟𝑃𝑡−1 (1− 𝑃𝑡−1)−𝐻𝑡−1/𝐾) 𝑒𝜀𝑡 , 𝑡 = 1975, . . . , 2019,

where 𝑃0 is the initial ratio of population size to carrying capacity. To predict total scaup harvest levels, we
modeled scaup harvest rates (ℎ𝑡) as a function of the pooled direct recovery rate (𝑓𝑡) observed each year with

ℎ𝑡 = 𝑓𝑡/𝜆𝑡.

We specified reporting rate (𝜆𝑡) distributions based on estimates for mallards (Anas platyrhynchos) from
large scale historical and existing reward banding studies (Henny and Burnham 1976, Nichols et al. 1995b,
P. Garrettson unpublished data). We accounted for increases in reporting rate believed to be associated with
changes in band type (e.g., from AVISE and new address bands to 1-800 toll free bands) by specifying year
specific reporting rates according to

𝜆𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0.38, 0.04), 𝑡 = 1974, . . . , 1996

𝜆𝑡 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0.70, 0.04), 𝑡 = 1997, . . . , 2019.

We then predicted total scaup harvest (𝐻𝑡) with

𝐻𝑡 = ℎ𝑡 [𝑃𝑡 + 𝑟𝑃𝑡 (1− 𝑃𝑡)]𝐾, 𝑡 = 1974, . . . , 2019.

Observation Model

We compared our predictions of population and harvest numbers from our process model to the observations
collected by the Waterfowl and Breeding Habitat Survey (WBPHS) and the Harvest Survey programs with
the following relationships, assuming that the population and harvest observation errors were additive and
normally distributed. May breeding population estimates were related to model predictions by

𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑡 − 𝑃𝑡𝐾 = 𝜀𝐵𝑃𝑂𝑃

𝑡 ,
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where

𝜀𝐵𝑃𝑂𝑃
𝑡 ∼ 𝑁(0, 𝜎2

𝑡,𝐵𝑃𝑂𝑃 ), 𝑡 = 1974, . . . , 2019,

where 𝜎2
𝑡,𝐵𝑃𝑂𝑃 is specified each year with the BPOP variance estimates from the WBPHS.

We adjusted our harvest predictions to the observed harvest data estimates with a scaling parameter (q)
according to

𝐻𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑡 − (ℎ𝑡 [𝑃𝑡 + 𝑟𝑃𝑡 (1− 𝑃𝑡)]𝐾) /𝑞 = 𝜀𝐻𝑡 , 𝑡 = 1974, . . . , 2019,

where,

𝜀𝐻𝑡 ∼ 𝑁(0, 𝜎2
𝑡,𝐻𝑎𝑟𝑣𝑒𝑠𝑡).

We assumed that appropriate measures of the harvest observation error 𝜎2
𝑡,𝐻𝑎𝑟𝑣𝑒𝑠𝑡 could be approximated by

assuming a coefficient of variation for each annual harvest estimate equal to 0.15 (Paul Padding pers. comm.).
The final component of the likelihood included the year specific direct recovery rates that were represented
by the rate parameter (𝑓𝑡) of a Binomial distribution indexed by the total number of birds banded preseason
and estimated with,

𝑓𝑡 = 𝑚𝑡/𝑀𝑡,

𝑚𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑀𝑡, 𝑓𝑡)

where 𝑚𝑡 is the total number of scaup banded preseason in year t and recovered during the hunting season
in year t and 𝑀𝑡 is the total number of scaup banded preseason in year t.

Bayesian Analysis

Following Meyer and Millar (1999), we developed a fully conditional joint probability model, by first proposing
prior distributions for all model parameters and unobserved system states and secondly by developing a fully
conditional likelihood for each sampling distribution.

Prior Distributions

For this analysis, a joint prior distribution is required because the unknown system states P are assumed to
be conditionally independent (Meyer and Millar 1999). This leads to the following joint prior distribution for
the model parameters and unobserved system states

𝑃 (𝑟,𝐾, 𝑞, 𝑓𝑡, 𝜆𝑡, 𝜎
2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝑃0, 𝑃1,...,𝑇 ) =

𝑝(𝑟)𝑝(𝐾)𝑝(𝑞)𝑝(𝑓𝑡)𝑝(𝜆𝑡)𝑝(𝜎
2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠)𝑝(𝑃0)𝑝(𝑃1|𝑃0, 𝜎

2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠)

×
𝑛∏︁

𝑡=2

𝑝(𝑃𝑡|𝑃𝑡−1, 𝑟,𝐾, 𝑓𝑡−1, 𝜆𝑡−1, 𝜎
2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠)

In general, we chose non-informative priors to represent the uncertainty we have in specifying the value of
the parameters used in our assessment. However, we were required to use existing information to specify
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informative priors for the initial ratio of population size to carrying capacity (𝑃0) as well as the reporting
rate values (𝜆𝑡) specified above that were used to adjust the direct recovery rate estimates to harvest rates.

We specified that the value of 𝑃0, ranged from the population size at maximum sustained yield (𝑃0 =
𝑁𝑀𝑆𝑌 /𝐾 = (𝐾/2)/𝐾 = 0.5) to the carrying capacity (𝑃0 = 𝑁/𝐾 = 1), using a uniform distribution on the
log scale to represent this range of values. We assumed that the exploitation experienced at this population
state was somewhere on the right-hand shoulder of a sustained yield curve (i.e., between MSY and K ). Given
that we have very little evidence to suggest that historical scaup harvest levels were limiting scaup population
growth, this seems like a reasonable prior distribution.

We used non-informative prior distributions to represent the variance and scaling terms, while the priors for
the population parameters r and K were chosen to be vague but within biological bounds. These distributions
were specified according to

𝑃0 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑙𝑛(0.5), 0),

𝐾 ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(2.17, 0.667),

𝑟 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.00001, 2),

𝑓𝑡 ∼ 𝐵𝑒𝑡𝑎(0.5, 0.5),

𝑞 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.0, 2),

𝜎2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠 ∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(0.001, 0.001).

Likelihood

We related the observed population, total harvest estimates, and observed direct recoveries to the model
parameters and unobserved system states with the following likelihood function:

𝑃 (𝑁1,...,𝑇 , 𝐻1,...,𝑇 ,𝑚1,...,𝑇𝑀1,...,𝑇 |𝑟,𝐾, 𝑓𝑡, 𝜆𝑡, 𝑞, 𝜎
2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝜎

2
𝐻𝑎𝑟𝑣𝑒𝑠𝑡, 𝑃1,...,𝑇 ) =

×
𝑇∏︁

𝑡=1

𝑝(𝑁𝑡|𝑃𝑡,𝐾, 𝜎2
𝐵𝑃𝑂𝑃 )×

𝑇∏︁
𝑡=1

𝑝(𝐻𝑡|𝑃𝑡, 𝑟,𝐾, 𝑞, 𝑓𝑡, 𝜆𝑡, 𝜎
2
𝐻𝑎𝑟𝑣𝑒𝑠𝑡)

×
𝑇∏︁

𝑡=1

𝑝(𝑚𝑡|𝑀𝑡, 𝑓𝑡)

Posterior Evaluation

Using Bayes theorem we then specified a posterior distribution for the fully conditional joint probability
distribution of the parameters given the observed information according to

𝑃 (𝑟,𝐾, 𝑞, 𝑓𝑡, 𝜆𝑡, 𝜎
2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠, 𝑃0, 𝑃1,...,𝑇 |𝑁1,...,𝑇 , 𝐻1,...,𝑇 ,𝑚1,...,𝑇 ,𝑀1,...,𝑇 ) ∝

𝑝(𝑟)𝑝(𝐾)𝑝(𝑞)𝑝(𝑓𝑡)𝑝(𝜆𝑡)𝑝(𝜎
2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠)𝑝(𝑃0)𝑝(𝑃1|𝑃0, 𝜎

2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠)

×
𝑛∏︁

𝑡=2

𝑝(𝑃𝑡|𝑃𝑡−1, 𝑟,𝐾, 𝑓𝑡−1, 𝜆𝑡−1, 𝜎
2
𝑃𝑟𝑜𝑐𝑒𝑠𝑠)×

𝑇∏︁
𝑡=1

𝑝(𝑁𝑡|𝑃𝑡,𝐾, 𝜎2
𝐵𝑃𝑂𝑃 )

×
𝑇∏︁

𝑡=1

𝑝(𝐻𝑡|𝑃𝑡, 𝑟,𝐾, 𝑞, 𝑓𝑡, 𝜆𝑡, 𝜎
2
𝐻𝑎𝑟𝑣𝑒𝑠𝑡)×

𝑇∏︁
𝑡=1

𝑝(𝑚𝑡|𝑀𝑡, 𝑓𝑡)
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Table M.1 – Model parameter estimates resulting from a Bayesian analysis of scaup breeding population,
harvest, and banding information from 1974 to 2019.

Parameter Mean SD 2.5% CI Median 97.5% CI

r 0.1342 0.0451 0.0634 0.1277 0.2409

K 8.7645 1.6932 6.2250 8.5055 12.5000

𝜎2 0.0078 0.0031 0.0034 0.0072 0.0151

q 0.7550 0.0402 0.6806 0.7536 0.8397

We used MCMC methods to evaluate the posterior distribution using WinBUGS (Spiegelhalter et al. 2003).
We randomly generated initial values and simulated 5 independent chains each with 1,000,000 iterations. We
discarded the first half of the simulation and thinned each chain by 250, yielding a sample of 10,000 points.
We calculated Gelman-Rubin statistics (Brooks and Gelman 1998) to monitor for lack of convergence. The
state-space formulation and Bayesian analysis framework provided reasonable fits to the observed breeding
population and total harvest estimates with realistic measures of variation. The 2019 posterior estimates of
model parameters based on data from 1974 to 2019 are provided in Table M.1.

We further summarized the simulation results for r, K, and the scaling parameter q to admit parametric
uncertainty with a formal correlation structure within the optimization procedure used to calculate the
harvest strategy. We first defined a joint distribution for 3 discrete outcomes for each of the 3 population
parameters. We used the 30 and 70 percent quantiles for each parameter as the cut points to define three
bins for which to discretize 3 values of each posterior distribution. We then determined the frequency of
occurrence of each of the 27 possible combinations of each parameter value falling within the 3 bins from the
MCMC simulation results. These frequencies were then assigned parameter values based on the midpoint of
the bin ranges (15, 50, 85 percent quantiles) to specify the joint distribution of the population parameter
values used in the optimization.
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